Primitive Type u32 []

Operations and constants for unsigned 32-bits integers (u32 type)

Methods

impl u32

fn min_value() -> u32

Returns the smallest value that can be represented by this integer type.

fn max_value() -> u32

Returns the largest value that can be represented by this integer type.

fn from_str_radix(src: &str, radix: u32) -> Result<u32, ParseIntError>

Converts a string slice in a given base to an integer.

Leading and trailing whitespace represent an error.

Arguments

  • src - A string slice
  • radix - The base to use. Must lie in the range [2 .. 36]

Return value

Err(ParseIntError) if the string did not represent a valid number. Otherwise, Ok(n) where n is the integer represented by src.

fn count_ones(self) -> u32

Returns the number of ones in the binary representation of self.

Examples

fn main() { let n = 0b01001100u8; assert_eq!(n.count_ones(), 3); }
let n = 0b01001100u8;

assert_eq!(n.count_ones(), 3);

fn count_zeros(self) -> u32

Returns the number of zeros in the binary representation of self.

Examples

fn main() { let n = 0b01001100u8; assert_eq!(n.count_zeros(), 5); }
let n = 0b01001100u8;

assert_eq!(n.count_zeros(), 5);

fn leading_zeros(self) -> u32

Returns the number of leading zeros in the binary representation of self.

Examples

fn main() { let n = 0b0101000u16; assert_eq!(n.leading_zeros(), 10); }
let n = 0b0101000u16;

assert_eq!(n.leading_zeros(), 10);

fn trailing_zeros(self) -> u32

Returns the number of trailing zeros in the binary representation of self.

Examples

fn main() { let n = 0b0101000u16; assert_eq!(n.trailing_zeros(), 3); }
let n = 0b0101000u16;

assert_eq!(n.trailing_zeros(), 3);

fn rotate_left(self, n: u32) -> u32

Shifts the bits to the left by a specified amount, n, wrapping the truncated bits to the end of the resulting integer.

Examples

fn main() { let n = 0x0123456789ABCDEFu64; let m = 0x3456789ABCDEF012u64; assert_eq!(n.rotate_left(12), m); }
let n = 0x0123456789ABCDEFu64;
let m = 0x3456789ABCDEF012u64;

assert_eq!(n.rotate_left(12), m);

fn rotate_right(self, n: u32) -> u32

Shifts the bits to the right by a specified amount, n, wrapping the truncated bits to the beginning of the resulting integer.

Examples

fn main() { let n = 0x0123456789ABCDEFu64; let m = 0xDEF0123456789ABCu64; assert_eq!(n.rotate_right(12), m); }
let n = 0x0123456789ABCDEFu64;
let m = 0xDEF0123456789ABCu64;

assert_eq!(n.rotate_right(12), m);

fn swap_bytes(self) -> u32

Reverses the byte order of the integer.

Examples

fn main() { let n = 0x0123456789ABCDEFu64; let m = 0xEFCDAB8967452301u64; assert_eq!(n.swap_bytes(), m); }
let n = 0x0123456789ABCDEFu64;
let m = 0xEFCDAB8967452301u64;

assert_eq!(n.swap_bytes(), m);

fn from_be(x: u32) -> u32

Converts an integer from big endian to the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(u64::from_be(n), n) } else { assert_eq!(u64::from_be(n), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "big") {
    assert_eq!(u64::from_be(n), n)
} else {
    assert_eq!(u64::from_be(n), n.swap_bytes())
}

fn from_le(x: u32) -> u32

Converts an integer from little endian to the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(u64::from_le(n), n) } else { assert_eq!(u64::from_le(n), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "little") {
    assert_eq!(u64::from_le(n), n)
} else {
    assert_eq!(u64::from_le(n), n.swap_bytes())
}

fn to_be(self) -> u32

Converts self to big endian from the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}

fn to_le(self) -> u32

Converts self to little endian from the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}

fn checked_add(self, other: u32) -> Option<u32>

Checked integer addition. Computes self + other, returning None if overflow occurred.

Examples

fn main() { assert_eq!(5u16.checked_add(65530), Some(65535)); assert_eq!(6u16.checked_add(65530), None); }
assert_eq!(5u16.checked_add(65530), Some(65535));
assert_eq!(6u16.checked_add(65530), None);

fn checked_sub(self, other: u32) -> Option<u32>

Checked integer subtraction. Computes self - other, returning None if underflow occurred.

Examples

fn main() { assert_eq!((-127i8).checked_sub(1), Some(-128)); assert_eq!((-128i8).checked_sub(1), None); }
assert_eq!((-127i8).checked_sub(1), Some(-128));
assert_eq!((-128i8).checked_sub(1), None);

fn checked_mul(self, other: u32) -> Option<u32>

Checked integer multiplication. Computes self * other, returning None if underflow or overflow occurred.

Examples

fn main() { assert_eq!(5u8.checked_mul(51), Some(255)); assert_eq!(5u8.checked_mul(52), None); }
assert_eq!(5u8.checked_mul(51), Some(255));
assert_eq!(5u8.checked_mul(52), None);

fn checked_div(self, v: u32) -> Option<u32>

Checked integer division. Computes self / other, returning None if other == 0 or the operation results in underflow or overflow.

Examples

fn main() { assert_eq!((-127i8).checked_div(-1), Some(127)); assert_eq!((-128i8).checked_div(-1), None); assert_eq!((1i8).checked_div(0), None); }
assert_eq!((-127i8).checked_div(-1), Some(127));
assert_eq!((-128i8).checked_div(-1), None);
assert_eq!((1i8).checked_div(0), None);

fn saturating_add(self, other: u32) -> u32

Saturating integer addition. Computes self + other, saturating at the numeric bounds instead of overflowing.

fn saturating_sub(self, other: u32) -> u32

Saturating integer subtraction. Computes self - other, saturating at the numeric bounds instead of overflowing.

fn wrapping_add(self, rhs: u32) -> u32

Wrapping (modular) addition. Computes self + other, wrapping around at the boundary of the type.

fn wrapping_sub(self, rhs: u32) -> u32

Wrapping (modular) subtraction. Computes self - other, wrapping around at the boundary of the type.

fn wrapping_mul(self, rhs: u32) -> u32

Wrapping (modular) multiplication. Computes self * other, wrapping around at the boundary of the type.

fn wrapping_div(self, rhs: u32) -> u32

Unstable

Wrapping (modular) division. Computes floor(self / other), wrapping around at the boundary of the type.

The only case where such wrapping can occur is when one divides MIN / -1 on a signed type (where MIN is the negative minimal value for the type); this is equivalent to -MIN, a positive value that is too large to represent in the type. In such a case, this function returns MIN itself..

fn wrapping_rem(self, rhs: u32) -> u32

Unstable

Wrapping (modular) remainder. Computes self % other, wrapping around at the boundary of the type.

Such wrap-around never actually occurs mathematically; implementation artifacts make x % y illegal for MIN / -1 on a signed type illegal (where MIN is the negative minimal value). In such a case, this function returns 0.

fn wrapping_neg(self) -> u32

Unstable

Wrapping (modular) negation. Computes -self, wrapping around at the boundary of the type.

The only case where such wrapping can occur is when one negates MIN on a signed type (where MIN is the negative minimal value for the type); this is a positive value that is too large to represent in the type. In such a case, this function returns MIN itself.

fn wrapping_shl(self, rhs: u32) -> u32

Unstable

Panic-free bitwise shift-left; yields self << mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

fn wrapping_shr(self, rhs: u32) -> u32

Unstable

Panic-free bitwise shift-left; yields self >> mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

fn pow(self, exp: u32) -> u32

Raises self to the power of exp, using exponentiation by squaring.

Examples

fn main() { assert_eq!(2i32.pow(4), 16); }
assert_eq!(2i32.pow(4), 16);

fn is_power_of_two(self) -> bool

Returns true iff self == 2^k for some k.

fn next_power_of_two(self) -> u32

Returns the smallest power of two greater than or equal to self. Unspecified behavior on overflow.

fn checked_next_power_of_two(self) -> Option<u32>

Returns the smallest power of two greater than or equal to n. If the next power of two is greater than the type's maximum value, None is returned, otherwise the power of two is wrapped in Some.

Trait Implementations

impl OverflowingOps for u32

fn overflowing_add(self, rhs: u32) -> (u32, bool)

fn overflowing_sub(self, rhs: u32) -> (u32, bool)

fn overflowing_mul(self, rhs: u32) -> (u32, bool)

fn overflowing_div(self, rhs: u32) -> (u32, bool)

fn overflowing_rem(self, rhs: u32) -> (u32, bool)

fn overflowing_shl(self, rhs: u32) -> (u32, bool)

fn overflowing_shr(self, rhs: u32) -> (u32, bool)

fn overflowing_neg(self) -> (u32, bool)

impl FullOps for u32

fn full_add(self, other: u32, carry: bool) -> (bool, u32)

fn full_mul(self, other: u32, carry: u32) -> (u32, u32)

fn full_mul_add(self, other: u32, other2: u32, carry: u32) -> (u32, u32)

fn full_div_rem(self, other: u32, borrow: u32) -> (u32, u32)

impl Zero for u32

fn zero() -> u32

impl One for u32

fn one() -> u32

impl FromStr for u32

type Err = ParseIntError

fn from_str(src: &str) -> Result<u32, ParseIntError>

impl Zeroable for u32

impl Add<u32> for u32

type Output = u32

fn add(self, other: u32) -> u32

impl<'a> Add<u32> for &'a u32

type Output = u32::Output

fn add(self, other: u32) -> u32::Output

impl<'a> Add<&'a u32> for u32

type Output = u32::Output

fn add(self, other: &'a u32) -> u32::Output

impl<'a, 'b> Add<&'a u32> for &'b u32

type Output = u32::Output

fn add(self, other: &'a u32) -> u32::Output

impl Sub<u32> for u32

type Output = u32

fn sub(self, other: u32) -> u32

impl<'a> Sub<u32> for &'a u32

type Output = u32::Output

fn sub(self, other: u32) -> u32::Output

impl<'a> Sub<&'a u32> for u32

type Output = u32::Output

fn sub(self, other: &'a u32) -> u32::Output

impl<'a, 'b> Sub<&'a u32> for &'b u32

type Output = u32::Output

fn sub(self, other: &'a u32) -> u32::Output

impl Mul<u32> for u32

type Output = u32

fn mul(self, other: u32) -> u32

impl<'a> Mul<u32> for &'a u32

type Output = u32::Output

fn mul(self, other: u32) -> u32::Output

impl<'a> Mul<&'a u32> for u32

type Output = u32::Output

fn mul(self, other: &'a u32) -> u32::Output

impl<'a, 'b> Mul<&'a u32> for &'b u32

type Output = u32::Output

fn mul(self, other: &'a u32) -> u32::Output

impl Div<u32> for u32

type Output = u32

fn div(self, other: u32) -> u32

impl<'a> Div<u32> for &'a u32

type Output = u32::Output

fn div(self, other: u32) -> u32::Output

impl<'a> Div<&'a u32> for u32

type Output = u32::Output

fn div(self, other: &'a u32) -> u32::Output

impl<'a, 'b> Div<&'a u32> for &'b u32

type Output = u32::Output

fn div(self, other: &'a u32) -> u32::Output

impl Rem<u32> for u32

type Output = u32

fn rem(self, other: u32) -> u32

impl<'a> Rem<u32> for &'a u32

type Output = u32::Output

fn rem(self, other: u32) -> u32::Output

impl<'a> Rem<&'a u32> for u32

type Output = u32::Output

fn rem(self, other: &'a u32) -> u32::Output

impl<'a, 'b> Rem<&'a u32> for &'b u32

type Output = u32::Output

fn rem(self, other: &'a u32) -> u32::Output

impl Not for u32

type Output = u32

fn not(self) -> u32

impl<'a> Not for &'a u32

type Output = u32::Output

fn not(self) -> u32::Output

impl BitAnd<u32> for u32

type Output = u32

fn bitand(self, rhs: u32) -> u32

impl<'a> BitAnd<u32> for &'a u32

type Output = u32::Output

fn bitand(self, other: u32) -> u32::Output

impl<'a> BitAnd<&'a u32> for u32

type Output = u32::Output

fn bitand(self, other: &'a u32) -> u32::Output

impl<'a, 'b> BitAnd<&'a u32> for &'b u32

type Output = u32::Output

fn bitand(self, other: &'a u32) -> u32::Output

impl BitOr<u32> for u32

type Output = u32

fn bitor(self, rhs: u32) -> u32

impl<'a> BitOr<u32> for &'a u32

type Output = u32::Output

fn bitor(self, other: u32) -> u32::Output

impl<'a> BitOr<&'a u32> for u32

type Output = u32::Output

fn bitor(self, other: &'a u32) -> u32::Output

impl<'a, 'b> BitOr<&'a u32> for &'b u32

type Output = u32::Output

fn bitor(self, other: &'a u32) -> u32::Output

impl BitXor<u32> for u32

type Output = u32

fn bitxor(self, other: u32) -> u32

impl<'a> BitXor<u32> for &'a u32

type Output = u32::Output

fn bitxor(self, other: u32) -> u32::Output

impl<'a> BitXor<&'a u32> for u32

type Output = u32::Output

fn bitxor(self, other: &'a u32) -> u32::Output

impl<'a, 'b> BitXor<&'a u32> for &'b u32

type Output = u32::Output

fn bitxor(self, other: &'a u32) -> u32::Output

impl Shl<u8> for u32

type Output = u32

fn shl(self, other: u8) -> u32

impl<'a> Shl<u8> for &'a u32

type Output = u32::Output

fn shl(self, other: u8) -> u32::Output

impl<'a> Shl<&'a u8> for u32

type Output = u32::Output

fn shl(self, other: &'a u8) -> u32::Output

impl<'a, 'b> Shl<&'a u8> for &'b u32

type Output = u32::Output

fn shl(self, other: &'a u8) -> u32::Output

impl Shl<u16> for u32

type Output = u32

fn shl(self, other: u16) -> u32

impl<'a> Shl<u16> for &'a u32

type Output = u32::Output

fn shl(self, other: u16) -> u32::Output

impl<'a> Shl<&'a u16> for u32

type Output = u32::Output

fn shl(self, other: &'a u16) -> u32::Output

impl<'a, 'b> Shl<&'a u16> for &'b u32

type Output = u32::Output

fn shl(self, other: &'a u16) -> u32::Output

impl Shl<u32> for u32

type Output = u32

fn shl(self, other: u32) -> u32

impl<'a> Shl<u32> for &'a u32

type Output = u32::Output

fn shl(self, other: u32) -> u32::Output

impl<'a> Shl<&'a u32> for u32

type Output = u32::Output

fn shl(self, other: &'a u32) -> u32::Output

impl<'a, 'b> Shl<&'a u32> for &'b u32

type Output = u32::Output

fn shl(self, other: &'a u32) -> u32::Output

impl Shl<u64> for u32

type Output = u32

fn shl(self, other: u64) -> u32

impl<'a> Shl<u64> for &'a u32

type Output = u32::Output

fn shl(self, other: u64) -> u32::Output

impl<'a> Shl<&'a u64> for u32

type Output = u32::Output

fn shl(self, other: &'a u64) -> u32::Output

impl<'a, 'b> Shl<&'a u64> for &'b u32

type Output = u32::Output

fn shl(self, other: &'a u64) -> u32::Output

impl Shl<usize> for u32

type Output = u32

fn shl(self, other: usize) -> u32

impl<'a> Shl<usize> for &'a u32

type Output = u32::Output

fn shl(self, other: usize) -> u32::Output

impl<'a> Shl<&'a usize> for u32

type Output = u32::Output

fn shl(self, other: &'a usize) -> u32::Output

impl<'a, 'b> Shl<&'a usize> for &'b u32

type Output = u32::Output

fn shl(self, other: &'a usize) -> u32::Output

impl Shl<i8> for u32

type Output = u32

fn shl(self, other: i8) -> u32

impl<'a> Shl<i8> for &'a u32

type Output = u32::Output

fn shl(self, other: i8) -> u32::Output

impl<'a> Shl<&'a i8> for u32

type Output = u32::Output

fn shl(self, other: &'a i8) -> u32::Output

impl<'a, 'b> Shl<&'a i8> for &'b u32

type Output = u32::Output

fn shl(self, other: &'a i8) -> u32::Output

impl Shl<i16> for u32

type Output = u32

fn shl(self, other: i16) -> u32

impl<'a> Shl<i16> for &'a u32

type Output = u32::Output

fn shl(self, other: i16) -> u32::Output

impl<'a> Shl<&'a i16> for u32

type Output = u32::Output

fn shl(self, other: &'a i16) -> u32::Output

impl<'a, 'b> Shl<&'a i16> for &'b u32

type Output = u32::Output

fn shl(self, other: &'a i16) -> u32::Output

impl Shl<i32> for u32

type Output = u32

fn shl(self, other: i32) -> u32

impl<'a> Shl<i32> for &'a u32

type Output = u32::Output

fn shl(self, other: i32) -> u32::Output

impl<'a> Shl<&'a i32> for u32

type Output = u32::Output

fn shl(self, other: &'a i32) -> u32::Output

impl<'a, 'b> Shl<&'a i32> for &'b u32

type Output = u32::Output

fn shl(self, other: &'a i32) -> u32::Output

impl Shl<i64> for u32

type Output = u32

fn shl(self, other: i64) -> u32

impl<'a> Shl<i64> for &'a u32

type Output = u32::Output

fn shl(self, other: i64) -> u32::Output

impl<'a> Shl<&'a i64> for u32

type Output = u32::Output

fn shl(self, other: &'a i64) -> u32::Output

impl<'a, 'b> Shl<&'a i64> for &'b u32

type Output = u32::Output

fn shl(self, other: &'a i64) -> u32::Output

impl Shl<isize> for u32

type Output = u32

fn shl(self, other: isize) -> u32

impl<'a> Shl<isize> for &'a u32

type Output = u32::Output

fn shl(self, other: isize) -> u32::Output

impl<'a> Shl<&'a isize> for u32

type Output = u32::Output

fn shl(self, other: &'a isize) -> u32::Output

impl<'a, 'b> Shl<&'a isize> for &'b u32

type Output = u32::Output

fn shl(self, other: &'a isize) -> u32::Output

impl Shr<u8> for u32

type Output = u32

fn shr(self, other: u8) -> u32

impl<'a> Shr<u8> for &'a u32

type Output = u32::Output

fn shr(self, other: u8) -> u32::Output

impl<'a> Shr<&'a u8> for u32

type Output = u32::Output

fn shr(self, other: &'a u8) -> u32::Output

impl<'a, 'b> Shr<&'a u8> for &'b u32

type Output = u32::Output

fn shr(self, other: &'a u8) -> u32::Output

impl Shr<u16> for u32

type Output = u32

fn shr(self, other: u16) -> u32

impl<'a> Shr<u16> for &'a u32

type Output = u32::Output

fn shr(self, other: u16) -> u32::Output

impl<'a> Shr<&'a u16> for u32

type Output = u32::Output

fn shr(self, other: &'a u16) -> u32::Output

impl<'a, 'b> Shr<&'a u16> for &'b u32

type Output = u32::Output

fn shr(self, other: &'a u16) -> u32::Output

impl Shr<u32> for u32

type Output = u32

fn shr(self, other: u32) -> u32

impl<'a> Shr<u32> for &'a u32

type Output = u32::Output

fn shr(self, other: u32) -> u32::Output

impl<'a> Shr<&'a u32> for u32

type Output = u32::Output

fn shr(self, other: &'a u32) -> u32::Output

impl<'a, 'b> Shr<&'a u32> for &'b u32

type Output = u32::Output

fn shr(self, other: &'a u32) -> u32::Output

impl Shr<u64> for u32

type Output = u32

fn shr(self, other: u64) -> u32

impl<'a> Shr<u64> for &'a u32

type Output = u32::Output

fn shr(self, other: u64) -> u32::Output

impl<'a> Shr<&'a u64> for u32

type Output = u32::Output

fn shr(self, other: &'a u64) -> u32::Output

impl<'a, 'b> Shr<&'a u64> for &'b u32

type Output = u32::Output

fn shr(self, other: &'a u64) -> u32::Output

impl Shr<usize> for u32

type Output = u32

fn shr(self, other: usize) -> u32

impl<'a> Shr<usize> for &'a u32

type Output = u32::Output

fn shr(self, other: usize) -> u32::Output

impl<'a> Shr<&'a usize> for u32

type Output = u32::Output

fn shr(self, other: &'a usize) -> u32::Output

impl<'a, 'b> Shr<&'a usize> for &'b u32

type Output = u32::Output

fn shr(self, other: &'a usize) -> u32::Output

impl Shr<i8> for u32

type Output = u32

fn shr(self, other: i8) -> u32

impl<'a> Shr<i8> for &'a u32

type Output = u32::Output

fn shr(self, other: i8) -> u32::Output

impl<'a> Shr<&'a i8> for u32

type Output = u32::Output

fn shr(self, other: &'a i8) -> u32::Output

impl<'a, 'b> Shr<&'a i8> for &'b u32

type Output = u32::Output

fn shr(self, other: &'a i8) -> u32::Output

impl Shr<i16> for u32

type Output = u32

fn shr(self, other: i16) -> u32

impl<'a> Shr<i16> for &'a u32

type Output = u32::Output

fn shr(self, other: i16) -> u32::Output

impl<'a> Shr<&'a i16> for u32

type Output = u32::Output

fn shr(self, other: &'a i16) -> u32::Output

impl<'a, 'b> Shr<&'a i16> for &'b u32

type Output = u32::Output

fn shr(self, other: &'a i16) -> u32::Output

impl Shr<i32> for u32

type Output = u32

fn shr(self, other: i32) -> u32

impl<'a> Shr<i32> for &'a u32

type Output = u32::Output

fn shr(self, other: i32) -> u32::Output

impl<'a> Shr<&'a i32> for u32

type Output = u32::Output

fn shr(self, other: &'a i32) -> u32::Output

impl<'a, 'b> Shr<&'a i32> for &'b u32

type Output = u32::Output

fn shr(self, other: &'a i32) -> u32::Output

impl Shr<i64> for u32

type Output = u32

fn shr(self, other: i64) -> u32

impl<'a> Shr<i64> for &'a u32

type Output = u32::Output

fn shr(self, other: i64) -> u32::Output

impl<'a> Shr<&'a i64> for u32

type Output = u32::Output

fn shr(self, other: &'a i64) -> u32::Output

impl<'a, 'b> Shr<&'a i64> for &'b u32

type Output = u32::Output

fn shr(self, other: &'a i64) -> u32::Output

impl Shr<isize> for u32

type Output = u32

fn shr(self, other: isize) -> u32

impl<'a> Shr<isize> for &'a u32

type Output = u32::Output

fn shr(self, other: isize) -> u32::Output

impl<'a> Shr<&'a isize> for u32

type Output = u32::Output

fn shr(self, other: &'a isize) -> u32::Output

impl<'a, 'b> Shr<&'a isize> for &'b u32

type Output = u32::Output

fn shr(self, other: &'a isize) -> u32::Output

impl PartialEq<u32> for u32

fn eq(&self, other: &u32) -> bool

fn ne(&self, other: &u32) -> bool

impl Eq for u32

impl PartialOrd<u32> for u32

fn partial_cmp(&self, other: &u32) -> Option<Ordering>

fn lt(&self, other: &u32) -> bool

fn le(&self, other: &u32) -> bool

fn ge(&self, other: &u32) -> bool

fn gt(&self, other: &u32) -> bool

impl Ord for u32

fn cmp(&self, other: &u32) -> Ordering

impl Clone for u32

fn clone(&self) -> u32

fn clone_from(&mut self, source: &Self)

impl Default for u32

fn default() -> u32

impl Step for u32

fn step(&self, by: &u32) -> Option<u32>

fn steps_between(start: &u32, end: &u32, by: &u32) -> Option<usize>

impl Hash for u32

fn hash<H>(&self, state: &mut H) where H: Hasher

fn hash_slice<H>(data: &[u32], state: &mut H) where H: Hasher

impl Display for u32

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl Binary for u32

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl Octal for u32

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl LowerHex for u32

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl UpperHex for u32

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl Debug for u32

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl From<Ipv4Addr> for u32

fn from(ip: Ipv4Addr) -> u32

impl SampleRange for u32

fn construct_range(low: u32, high: u32) -> Range<u32>

fn sample_range<R>(r: &Range<u32>, rng: &mut R) -> u32 where R: Rng

impl Rand for u32

fn rand<R>(rng: &mut R) -> u32 where R: Rng