1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Temporal quantification

#![unstable(feature = "duration", reason = "recently added API per RFC 1040")]

use prelude::v1::*;

use fmt;
use ops::{Add, Sub, Mul, Div};
use sys::time::SteadyTime;

const NANOS_PER_SEC: u32 = 1_000_000_000;
const NANOS_PER_MILLI: u32 = 1_000_000;
const MILLIS_PER_SEC: u64 = 1_000;

/// A duration type to represent a span of time, typically used for system
/// timeouts.
///
/// Each duration is composed of a number of seconds and nanosecond precision.
/// APIs binding a system timeout will typically round up the nanosecond
/// precision if the underlying system does not support that level of precision.
///
/// Durations implement many common traits, including `Add`, `Sub`, and other
/// ops traits. Currently a duration may only be inspected for its number of
/// seconds and its nanosecond precision.
///
/// # Examples
///
/// ```
/// #![feature(duration)]
/// use std::time::Duration;
///
/// let five_seconds = Duration::new(5, 0);
/// let five_seconds_and_five_nanos = five_seconds + Duration::new(0, 5);
///
/// assert_eq!(five_seconds_and_five_nanos.secs(), 5);
/// assert_eq!(five_seconds_and_five_nanos.extra_nanos(), 5);
///
/// let ten_millis = Duration::from_millis(10);
/// ```
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct Duration {
    secs: u64,
    nanos: u32, // Always 0 <= nanos < NANOS_PER_SEC
}

impl Duration {
    /// Crates a new `Duration` from the specified number of seconds and
    /// additional nanosecond precision.
    ///
    /// If the nanoseconds is greater than 1 billion (the number of nanoseconds
    /// in a second), then it will carry over into the seconds provided.
    pub fn new(secs: u64, nanos: u32) -> Duration {
        let secs = secs + (nanos / NANOS_PER_SEC) as u64;
        let nanos = nanos % NANOS_PER_SEC;
        Duration { secs: secs, nanos: nanos }
    }

    /// Runs a closure, returning the duration of time it took to run the
    /// closure.
    #[unstable(feature = "duration_span",
               reason = "unsure if this is the right API or whether it should \
                         wait for a more general \"moment in time\" \
                         abstraction")]
    pub fn span<F>(f: F) -> Duration where F: FnOnce() {
        let start = SteadyTime::now();
        f();
        &SteadyTime::now() - &start
    }

    /// Creates a new `Duration` from the specified number of seconds.
    pub fn from_secs(secs: u64) -> Duration {
        Duration { secs: secs, nanos: 0 }
    }

    /// Creates a new `Duration` from the specified number of milliseconds.
    pub fn from_millis(millis: u64) -> Duration {
        let secs = millis / MILLIS_PER_SEC;
        let nanos = ((millis % MILLIS_PER_SEC) as u32) * NANOS_PER_MILLI;
        Duration { secs: secs, nanos: nanos }
    }

    /// Returns the number of whole seconds represented by this duration.
    ///
    /// The extra precision represented by this duration is ignored (e.g. extra
    /// nanoseconds are not represented in the returned value).
    pub fn secs(&self) -> u64 { self.secs }

    /// Returns the nanosecond precision represented by this duration.
    ///
    /// This method does **not** return the length of the duration when
    /// represented by nanoseconds. The returned number always represents a
    /// fractional portion of a second (e.g. it is less than one billion).
    pub fn extra_nanos(&self) -> u32 { self.nanos }
}

impl Add for Duration {
    type Output = Duration;

    fn add(self, rhs: Duration) -> Duration {
        let mut secs = self.secs.checked_add(rhs.secs)
                           .expect("overflow when adding durations");
        let mut nanos = self.nanos + rhs.nanos;
        if nanos >= NANOS_PER_SEC {
            nanos -= NANOS_PER_SEC;
            secs = secs.checked_add(1).expect("overflow when adding durations");
        }
        debug_assert!(nanos < NANOS_PER_SEC);
        Duration { secs: secs, nanos: nanos }
    }
}

impl Sub for Duration {
    type Output = Duration;

    fn sub(self, rhs: Duration) -> Duration {
        let mut secs = self.secs.checked_sub(rhs.secs)
                           .expect("overflow when subtracting durations");
        let nanos = if self.nanos >= rhs.nanos {
            self.nanos - rhs.nanos
        } else {
            secs = secs.checked_sub(1)
                       .expect("overflow when subtracting durations");
            self.nanos + NANOS_PER_SEC - rhs.nanos
        };
        debug_assert!(nanos < NANOS_PER_SEC);
        Duration { secs: secs, nanos: nanos }
    }
}

impl Mul<u32> for Duration {
    type Output = Duration;

    fn mul(self, rhs: u32) -> Duration {
        // Multiply nanoseconds as u64, because it cannot overflow that way.
        let total_nanos = self.nanos as u64 * rhs as u64;
        let extra_secs = total_nanos / (NANOS_PER_SEC as u64);
        let nanos = (total_nanos % (NANOS_PER_SEC as u64)) as u32;
        let secs = self.secs.checked_mul(rhs as u64)
                       .and_then(|s| s.checked_add(extra_secs))
                       .expect("overflow when multiplying duration");
        debug_assert!(nanos < NANOS_PER_SEC);
        Duration { secs: secs, nanos: nanos }
    }
}

impl Div<u32> for Duration {
    type Output = Duration;

    fn div(self, rhs: u32) -> Duration {
        let secs = self.secs / (rhs as u64);
        let carry = self.secs - secs * (rhs as u64);
        let extra_nanos = carry * (NANOS_PER_SEC as u64) / (rhs as u64);
        let nanos = self.nanos / rhs + (extra_nanos as u32);
        debug_assert!(nanos < NANOS_PER_SEC);
        Duration { secs: secs, nanos: nanos }
    }
}

impl fmt::Display for Duration {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match (self.secs, self.nanos) {
            (s, 0) => write!(f, "{}s", s),
            (0, n) if n % NANOS_PER_MILLI == 0 => write!(f, "{}ms",
                                                         n / NANOS_PER_MILLI),
            (0, n) if n % 1_000 == 0 => write!(f, "{}µs", n / 1_000),
            (0, n) => write!(f, "{}ns", n),
            (s, n) => write!(f, "{}.{}s", s,
                             format!("{:09}", n).trim_right_matches('0'))
        }
    }
}

#[cfg(test)]
mod tests {
    use prelude::v1::*;
    use super::Duration;

    #[test]
    fn creation() {
        assert!(Duration::from_secs(1) != Duration::from_secs(0));
        assert_eq!(Duration::from_secs(1) + Duration::from_secs(2),
                   Duration::from_secs(3));
        assert_eq!(Duration::from_millis(10) + Duration::from_secs(4),
                   Duration::new(4, 10 * 1_000_000));
        assert_eq!(Duration::from_millis(4000), Duration::new(4, 0));
    }

    #[test]
    fn secs() {
        assert_eq!(Duration::new(0, 0).secs(), 0);
        assert_eq!(Duration::from_secs(1).secs(), 1);
        assert_eq!(Duration::from_millis(999).secs(), 0);
        assert_eq!(Duration::from_millis(1001).secs(), 1);
    }

    #[test]
    fn nanos() {
        assert_eq!(Duration::new(0, 0).extra_nanos(), 0);
        assert_eq!(Duration::new(0, 5).extra_nanos(), 5);
        assert_eq!(Duration::new(0, 1_000_000_001).extra_nanos(), 1);
        assert_eq!(Duration::from_secs(1).extra_nanos(), 0);
        assert_eq!(Duration::from_millis(999).extra_nanos(), 999 * 1_000_000);
        assert_eq!(Duration::from_millis(1001).extra_nanos(), 1 * 1_000_000);
    }

    #[test]
    fn add() {
        assert_eq!(Duration::new(0, 0) + Duration::new(0, 1),
                   Duration::new(0, 1));
        assert_eq!(Duration::new(0, 500_000_000) + Duration::new(0, 500_000_001),
                   Duration::new(1, 1));
    }

    #[test]
    fn sub() {
        assert_eq!(Duration::new(0, 1) - Duration::new(0, 0),
                   Duration::new(0, 1));
        assert_eq!(Duration::new(0, 500_000_001) - Duration::new(0, 500_000_000),
                   Duration::new(0, 1));
        assert_eq!(Duration::new(1, 0) - Duration::new(0, 1),
                   Duration::new(0, 999_999_999));
    }

    #[test] #[should_panic]
    fn sub_bad1() {
        Duration::new(0, 0) - Duration::new(0, 1);
    }

    #[test] #[should_panic]
    fn sub_bad2() {
        Duration::new(0, 0) - Duration::new(1, 0);
    }

    #[test]
    fn mul() {
        assert_eq!(Duration::new(0, 1) * 2, Duration::new(0, 2));
        assert_eq!(Duration::new(1, 1) * 3, Duration::new(3, 3));
        assert_eq!(Duration::new(0, 500_000_001) * 4, Duration::new(2, 4));
        assert_eq!(Duration::new(0, 500_000_001) * 4000,
                   Duration::new(2000, 4000));
    }

    #[test]
    fn div() {
        assert_eq!(Duration::new(0, 1) / 2, Duration::new(0, 0));
        assert_eq!(Duration::new(1, 1) / 3, Duration::new(0, 333_333_333));
        assert_eq!(Duration::new(99, 999_999_000) / 100,
                   Duration::new(0, 999_999_990));
    }

    #[test]
    fn display() {
        assert_eq!(Duration::new(0, 2).to_string(), "2ns");
        assert_eq!(Duration::new(0, 2_000_000).to_string(), "2ms");
        assert_eq!(Duration::new(2, 0).to_string(), "2s");
        assert_eq!(Duration::new(2, 2).to_string(), "2.000000002s");
        assert_eq!(Duration::new(2, 2_000_000).to_string(),
                   "2.002s");
        assert_eq!(Duration::new(0, 2_000_002).to_string(),
                   "2000002ns");
        assert_eq!(Duration::new(2, 2_000_002).to_string(),
                   "2.002000002s");
    }
}