1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Native threads //! //! ## The threading model //! //! An executing Rust program consists of a collection of native OS threads, //! each with their own stack and local state. //! //! Communication between threads can be done through //! [channels](../../std/sync/mpsc/index.html), Rust's message-passing //! types, along with [other forms of thread //! synchronization](../../std/sync/index.html) and shared-memory data //! structures. In particular, types that are guaranteed to be //! threadsafe are easily shared between threads using the //! atomically-reference-counted container, //! [`Arc`](../../std/sync/struct.Arc.html). //! //! Fatal logic errors in Rust cause *thread panic*, during which //! a thread will unwind the stack, running destructors and freeing //! owned resources. Thread panic is unrecoverable from within //! the panicking thread (i.e. there is no 'try/catch' in Rust), but //! the panic may optionally be detected from a different thread. If //! the main thread panics, the application will exit with a non-zero //! exit code. //! //! When the main thread of a Rust program terminates, the entire program shuts //! down, even if other threads are still running. However, this module provides //! convenient facilities for automatically waiting for the termination of a //! child thread (i.e., join). //! //! ## The `Thread` type //! //! Threads are represented via the `Thread` type, which you can //! get in one of two ways: //! //! * By spawning a new thread, e.g. using the `thread::spawn` function. //! * By requesting the current thread, using the `thread::current` function. //! //! Threads can be named, and provide some built-in support for low-level //! synchronization (described below). //! //! The `thread::current()` function is available even for threads not spawned //! by the APIs of this module. //! //! ## Spawning a thread //! //! A new thread can be spawned using the `thread::spawn` function: //! //! ```rust //! use std::thread; //! //! thread::spawn(move || { //! // some work here //! }); //! ``` //! //! In this example, the spawned thread is "detached" from the current //! thread. This means that it can outlive its parent (the thread that spawned //! it), unless this parent is the main thread. //! //! The parent thread can also wait on the completion of the child //! thread; a call to `spawn` produces a `JoinHandle`, which provides //! a `join` method for waiting: //! //! ```rust //! use std::thread; //! //! let child = thread::spawn(move || { //! // some work here //! }); //! // some work here //! let res = child.join(); //! ``` //! //! The `join` method returns a `Result` containing `Ok` of the final //! value produced by the child thread, or `Err` of the value given to //! a call to `panic!` if the child panicked. //! //! ## Scoped threads //! //! The `spawn` method does not allow the child and parent threads to //! share any stack data, since that is not safe in general. However, //! `scoped` makes it possible to share the parent's stack by forcing //! a join before any relevant stack frames are popped: //! //! ```rust //! # #![feature(scoped)] //! use std::thread; //! //! let guard = thread::scoped(move || { //! // some work here //! }); //! //! // do some other work in the meantime //! let output = guard.join(); //! ``` //! //! The `scoped` function doesn't return a `Thread` directly; instead, //! it returns a *join guard*. The join guard is an RAII-style guard //! that will automatically join the child thread (block until it //! terminates) when it is dropped. You can join the child thread in //! advance by calling the `join` method on the guard, which will also //! return the result produced by the thread. A handle to the thread //! itself is available via the `thread` method of the join guard. //! //! ## Configuring threads //! //! A new thread can be configured before it is spawned via the `Builder` type, //! which currently allows you to set the name and stack size for the child thread: //! //! ```rust //! # #![allow(unused_must_use)] //! use std::thread; //! //! thread::Builder::new().name("child1".to_string()).spawn(move || { //! println!("Hello, world!"); //! }); //! ``` //! //! ## Blocking support: park and unpark //! //! Every thread is equipped with some basic low-level blocking support, via the //! `park` and `unpark` functions. //! //! Conceptually, each `Thread` handle has an associated token, which is //! initially not present: //! //! * The `thread::park()` function blocks the current thread unless or until //! the token is available for its thread handle, at which point it atomically //! consumes the token. It may also return *spuriously*, without consuming the //! token. `thread::park_timeout()` does the same, but allows specifying a //! maximum time to block the thread for. //! //! * The `unpark()` method on a `Thread` atomically makes the token available //! if it wasn't already. //! //! In other words, each `Thread` acts a bit like a semaphore with initial count //! 0, except that the semaphore is *saturating* (the count cannot go above 1), //! and can return spuriously. //! //! The API is typically used by acquiring a handle to the current thread, //! placing that handle in a shared data structure so that other threads can //! find it, and then `park`ing. When some desired condition is met, another //! thread calls `unpark` on the handle. //! //! The motivation for this design is twofold: //! //! * It avoids the need to allocate mutexes and condvars when building new //! synchronization primitives; the threads already provide basic blocking/signaling. //! //! * It can be implemented very efficiently on many platforms. //! //! ## Thread-local storage //! //! This module also provides an implementation of thread local storage for Rust //! programs. Thread local storage is a method of storing data into a global //! variable which each thread in the program will have its own copy of. //! Threads do not share this data, so accesses do not need to be synchronized. //! //! At a high level, this module provides two variants of storage: //! //! * Owned thread-local storage. This is a type of thread local key which //! owns the value that it contains, and will destroy the value when the //! thread exits. This variant is created with the `thread_local!` macro and //! can contain any value which is `'static` (no borrowed pointers). //! //! * Scoped thread-local storage. This type of key is used to store a reference //! to a value into local storage temporarily for the scope of a function //! call. There are no restrictions on what types of values can be placed //! into this key. //! //! Both forms of thread local storage provide an accessor function, `with`, //! which will yield a shared reference to the value to the specified //! closure. Thread-local keys only allow shared access to values as there is no //! way to guarantee uniqueness if a mutable borrow was allowed. Most values //! will want to make use of some form of **interior mutability** through the //! `Cell` or `RefCell` types. #![stable(feature = "rust1", since = "1.0.0")] use prelude::v1::*; use alloc::boxed::FnBox; use any::Any; use cell::UnsafeCell; use fmt; use io; use marker::PhantomData; use rt::{self, unwind}; use sync::{Mutex, Condvar, Arc}; use sys::thread as imp; use sys_common::{stack, thread_info}; use time::Duration; //////////////////////////////////////////////////////////////////////////////// // Thread-local storage //////////////////////////////////////////////////////////////////////////////// #[macro_use] mod local; #[macro_use] mod scoped_tls; #[stable(feature = "rust1", since = "1.0.0")] pub use self::local::{LocalKey, LocalKeyState}; #[unstable(feature = "scoped_tls", reason = "scoped TLS has yet to have wide enough use to fully \ consider stabilizing its interface")] pub use self::scoped_tls::ScopedKey; #[doc(hidden)] pub use self::local::__KeyInner as __LocalKeyInner; //////////////////////////////////////////////////////////////////////////////// // Builder //////////////////////////////////////////////////////////////////////////////// /// Thread configuration. Provides detailed control over the properties /// and behavior of new threads. #[stable(feature = "rust1", since = "1.0.0")] pub struct Builder { // A name for the thread-to-be, for identification in panic messages name: Option<String>, // The size of the stack for the spawned thread stack_size: Option<usize>, } impl Builder { /// Generates the base configuration for spawning a thread, from which /// configuration methods can be chained. #[stable(feature = "rust1", since = "1.0.0")] pub fn new() -> Builder { Builder { name: None, stack_size: None, } } /// Names the thread-to-be. Currently the name is used for identification /// only in panic messages. #[stable(feature = "rust1", since = "1.0.0")] pub fn name(mut self, name: String) -> Builder { self.name = Some(name); self } /// Sets the size of the stack for the new thread. #[stable(feature = "rust1", since = "1.0.0")] pub fn stack_size(mut self, size: usize) -> Builder { self.stack_size = Some(size); self } /// Spawns a new thread, and returns a join handle for it. /// /// The child thread may outlive the parent (unless the parent thread /// is the main thread; the whole process is terminated when the main /// thread finishes). The join handle can be used to block on /// termination of the child thread, including recovering its panics. /// /// # Errors /// /// Unlike the `spawn` free function, this method yields an /// `io::Result` to capture any failure to create the thread at /// the OS level. #[stable(feature = "rust1", since = "1.0.0")] pub fn spawn<F, T>(self, f: F) -> io::Result<JoinHandle<T>> where F: FnOnce() -> T, F: Send + 'static, T: Send + 'static { unsafe { self.spawn_inner(Box::new(f)).map(JoinHandle) } } /// Spawns a new child thread that must be joined within a given /// scope, and returns a `JoinGuard`. /// /// The join guard can be used to explicitly join the child thread (via /// `join`), returning `Result<T>`, or it will implicitly join the child /// upon being dropped. Because the child thread may refer to data on the /// current thread's stack (hence the "scoped" name), it cannot be detached; /// it *must* be joined before the relevant stack frame is popped. See the /// module documentation for additional details. /// /// # Errors /// /// Unlike the `scoped` free function, this method yields an /// `io::Result` to capture any failure to create the thread at /// the OS level. #[unstable(feature = "scoped", reason = "memory unsafe if destructor is avoided, see #24292")] pub fn scoped<'a, T, F>(self, f: F) -> io::Result<JoinGuard<'a, T>> where T: Send + 'a, F: FnOnce() -> T, F: Send + 'a { unsafe { self.spawn_inner(Box::new(f)).map(|inner| { JoinGuard { inner: inner, _marker: PhantomData } }) } } // NB: this function is unsafe as the lifetime parameter of the code to run // in the new thread is not tied into the return value, and the return // value must not outlast that lifetime. unsafe fn spawn_inner<'a, T: Send>(self, f: Box<FnBox() -> T + Send + 'a>) -> io::Result<JoinInner<T>> { let Builder { name, stack_size } = self; let stack_size = stack_size.unwrap_or(rt::min_stack()); let my_thread = Thread::new(name); let their_thread = my_thread.clone(); let my_packet = Arc::new(UnsafeCell::new(None)); let their_packet = my_packet.clone(); // Spawning a new OS thread guarantees that __morestack will never get // triggered, but we must manually set up the actual stack bounds once // this function starts executing. This raises the lower limit by a bit // because by the time that this function is executing we've already // consumed at least a little bit of stack (we don't know the exact byte // address at which our stack started). let main = move || { let something_around_the_top_of_the_stack = 1; let addr = &something_around_the_top_of_the_stack as *const i32; let my_stack_top = addr as usize; let my_stack_bottom = my_stack_top - stack_size + 1024; stack::record_os_managed_stack_bounds(my_stack_bottom, my_stack_top); if let Some(name) = their_thread.name() { imp::Thread::set_name(name); } thread_info::set(imp::guard::current(), their_thread); let mut output = None; let try_result = { let ptr = &mut output; unwind::try(move || *ptr = Some(f())) }; *their_packet.get() = Some(try_result.map(|()| { output.unwrap() })); }; Ok(JoinInner { native: Some(try!(imp::Thread::new(stack_size, Box::new(main)))), thread: my_thread, packet: Packet(my_packet), }) } } //////////////////////////////////////////////////////////////////////////////// // Free functions //////////////////////////////////////////////////////////////////////////////// /// Spawns a new thread, returning a `JoinHandle` for it. /// /// The join handle will implicitly *detach* the child thread upon being /// dropped. In this case, the child thread may outlive the parent (unless /// the parent thread is the main thread; the whole process is terminated when /// the main thread finishes.) Additionally, the join handle provides a `join` /// method that can be used to join the child thread. If the child thread /// panics, `join` will return an `Err` containing the argument given to /// `panic`. /// /// # Panics /// /// Panics if the OS fails to create a thread; use `Builder::spawn` /// to recover from such errors. #[stable(feature = "rust1", since = "1.0.0")] pub fn spawn<F, T>(f: F) -> JoinHandle<T> where F: FnOnce() -> T, F: Send + 'static, T: Send + 'static { Builder::new().spawn(f).unwrap() } /// Spawns a new *scoped* thread, returning a `JoinGuard` for it. /// /// The join guard can be used to explicitly join the child thread (via /// `join`), returning `Result<T>`, or it will implicitly join the child /// upon being dropped. Because the child thread may refer to data on the /// current thread's stack (hence the "scoped" name), it cannot be detached; /// it *must* be joined before the relevant stack frame is popped. See the /// module documentation for additional details. /// /// # Panics /// /// Panics if the OS fails to create a thread; use `Builder::scoped` /// to recover from such errors. #[unstable(feature = "scoped", reason = "memory unsafe if destructor is avoided, see #24292")] pub fn scoped<'a, T, F>(f: F) -> JoinGuard<'a, T> where T: Send + 'a, F: FnOnce() -> T, F: Send + 'a { Builder::new().scoped(f).unwrap() } /// Gets a handle to the thread that invokes it. #[stable(feature = "rust1", since = "1.0.0")] pub fn current() -> Thread { thread_info::current_thread().expect("use of std::thread::current() is not \ possible after the thread's local \ data has been destroyed") } /// Cooperatively gives up a timeslice to the OS scheduler. #[stable(feature = "rust1", since = "1.0.0")] pub fn yield_now() { imp::Thread::yield_now() } /// Determines whether the current thread is unwinding because of panic. #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn panicking() -> bool { unwind::panicking() } /// Invokes a closure, capturing the cause of panic if one occurs. /// /// This function will return `Ok(())` if the closure does not panic, and will /// return `Err(cause)` if the closure panics. The `cause` returned is the /// object with which panic was originally invoked. /// /// It is currently undefined behavior to unwind from Rust code into foreign /// code, so this function is particularly useful when Rust is called from /// another language (normally C). This can run arbitrary Rust code, capturing a /// panic and allowing a graceful handling of the error. /// /// It is **not** recommended to use this function for a general try/catch /// mechanism. The `Result` type is more appropriate to use for functions that /// can fail on a regular basis. /// /// The closure provided is required to adhere to the `'static` bound to ensure /// that it cannot reference data in the parent stack frame, mitigating problems /// with exception safety. Furthermore, a `Send` bound is also required, /// providing the same safety guarantees as `thread::spawn` (ensuring the /// closure is properly isolated from the parent). /// /// # Examples /// /// ``` /// # #![feature(catch_panic)] /// use std::thread; /// /// let result = thread::catch_panic(|| { /// println!("hello!"); /// }); /// assert!(result.is_ok()); /// /// let result = thread::catch_panic(|| { /// panic!("oh no!"); /// }); /// assert!(result.is_err()); /// ``` #[unstable(feature = "catch_panic", reason = "recent API addition")] pub fn catch_panic<F, R>(f: F) -> Result<R> where F: FnOnce() -> R + Send + 'static { let mut result = None; unsafe { let result = &mut result; try!(::rt::unwind::try(move || *result = Some(f()))) } Ok(result.unwrap()) } /// Puts the current thread to sleep for the specified amount of time. /// /// The thread may sleep longer than the duration specified due to scheduling /// specifics or platform-dependent functionality. Note that on unix platforms /// this function will not return early due to a signal being received or a /// spurious wakeup. #[stable(feature = "rust1", since = "1.0.0")] pub fn sleep_ms(ms: u32) { sleep(Duration::from_millis(ms as u64)) } /// Puts the current thread to sleep for the specified amount of time. /// /// The thread may sleep longer than the duration specified due to scheduling /// specifics or platform-dependent functionality. /// /// # Platform behavior /// /// On Unix platforms this function will not return early due to a /// signal being received or a spurious wakeup. Platforms which do not support /// nanosecond precision for sleeping will have `dur` rounded up to the nearest /// granularity of time they can sleep for. #[unstable(feature = "thread_sleep", reason = "waiting on Duration")] pub fn sleep(dur: Duration) { imp::Thread::sleep(dur) } /// Blocks unless or until the current thread's token is made available (may wake spuriously). /// /// See the module doc for more detail. // // The implementation currently uses the trivial strategy of a Mutex+Condvar // with wakeup flag, which does not actually allow spurious wakeups. In the // future, this will be implemented in a more efficient way, perhaps along the lines of // http://cr.openjdk.java.net/~stefank/6989984.1/raw_files/new/src/os/linux/vm/os_linux.cpp // or futuxes, and in either case may allow spurious wakeups. #[stable(feature = "rust1", since = "1.0.0")] pub fn park() { let thread = current(); let mut guard = thread.inner.lock.lock().unwrap(); while !*guard { guard = thread.inner.cvar.wait(guard).unwrap(); } *guard = false; } /// Blocks unless or until the current thread's token is made available or /// the specified duration has been reached (may wake spuriously). /// /// The semantics of this function are equivalent to `park()` except that the /// thread will be blocked for roughly no longer than *ms*. This method /// should not be used for precise timing due to anomalies such as /// preemption or platform differences that may not cause the maximum /// amount of time waited to be precisely *ms* long. /// /// See the module doc for more detail. #[stable(feature = "rust1", since = "1.0.0")] pub fn park_timeout_ms(ms: u32) { park_timeout(Duration::from_millis(ms as u64)) } /// Blocks unless or until the current thread's token is made available or /// the specified duration has been reached (may wake spuriously). /// /// The semantics of this function are equivalent to `park()` except that the /// thread will be blocked for roughly no longer than *dur*. This method /// should not be used for precise timing due to anomalies such as /// preemption or platform differences that may not cause the maximum /// amount of time waited to be precisely *dur* long. /// /// See the module doc for more detail. /// /// # Platform behavior /// /// Platforms which do not support nanosecond precision for sleeping will have /// `dur` rounded up to the nearest granularity of time they can sleep for. #[unstable(feature = "park_timeout", reason = "waiting on Duration")] pub fn park_timeout(dur: Duration) { let thread = current(); let mut guard = thread.inner.lock.lock().unwrap(); if !*guard { let (g, _) = thread.inner.cvar.wait_timeout(guard, dur).unwrap(); guard = g; } *guard = false; } //////////////////////////////////////////////////////////////////////////////// // Thread //////////////////////////////////////////////////////////////////////////////// /// The internal representation of a `Thread` handle struct Inner { name: Option<String>, lock: Mutex<bool>, // true when there is a buffered unpark cvar: Condvar, } #[derive(Clone)] #[stable(feature = "rust1", since = "1.0.0")] /// A handle to a thread. pub struct Thread { inner: Arc<Inner>, } impl Thread { // Used only internally to construct a thread object without spawning fn new(name: Option<String>) -> Thread { Thread { inner: Arc::new(Inner { name: name, lock: Mutex::new(false), cvar: Condvar::new(), }) } } /// Atomically makes the handle's token available if it is not already. /// /// See the module doc for more detail. #[stable(feature = "rust1", since = "1.0.0")] pub fn unpark(&self) { let mut guard = self.inner.lock.lock().unwrap(); if !*guard { *guard = true; self.inner.cvar.notify_one(); } } /// Gets the thread's name. #[stable(feature = "rust1", since = "1.0.0")] pub fn name(&self) -> Option<&str> { self.inner.name.as_ref().map(|s| &**s) } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for Thread { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&self.name(), f) } } // a hack to get around privacy restrictions impl thread_info::NewThread for Thread { fn new(name: Option<String>) -> Thread { Thread::new(name) } } //////////////////////////////////////////////////////////////////////////////// // JoinHandle and JoinGuard //////////////////////////////////////////////////////////////////////////////// /// Indicates the manner in which a thread exited. /// /// A thread that completes without panicking is considered to exit successfully. #[stable(feature = "rust1", since = "1.0.0")] pub type Result<T> = ::result::Result<T, Box<Any + Send + 'static>>; // This packet is used to communicate the return value between the child thread // and the parent thread. Memory is shared through the `Arc` within and there's // no need for a mutex here because synchronization happens with `join()` (the // parent thread never reads this packet until the child has exited). // // This packet itself is then stored into a `JoinInner` which in turns is placed // in `JoinHandle` and `JoinGuard`. Due to the usage of `UnsafeCell` we need to // manually worry about impls like Send and Sync. The type `T` should // already always be Send (otherwise the thread could not have been created) and // this type is inherently Sync because no methods take &self. Regardless, // however, we add inheriting impls for Send/Sync to this type to ensure it's // Send/Sync and that future modifications will still appropriately classify it. struct Packet<T>(Arc<UnsafeCell<Option<Result<T>>>>); unsafe impl<T: Send> Send for Packet<T> {} unsafe impl<T: Sync> Sync for Packet<T> {} /// Inner representation for JoinHandle and JoinGuard struct JoinInner<T> { native: Option<imp::Thread>, thread: Thread, packet: Packet<T>, } impl<T> JoinInner<T> { fn join(&mut self) -> Result<T> { self.native.take().unwrap().join(); unsafe { (*self.packet.0.get()).take().unwrap() } } } /// An owned permission to join on a thread (block on its termination). /// /// Unlike a `JoinGuard`, a `JoinHandle` *detaches* the child thread /// when it is dropped, rather than automatically joining on drop. /// /// Due to platform restrictions, it is not possible to `Clone` this /// handle: the ability to join a child thread is a uniquely-owned /// permission. #[stable(feature = "rust1", since = "1.0.0")] pub struct JoinHandle<T>(JoinInner<T>); impl<T> JoinHandle<T> { /// Extracts a handle to the underlying thread #[stable(feature = "rust1", since = "1.0.0")] pub fn thread(&self) -> &Thread { &self.0.thread } /// Waits for the associated thread to finish. /// /// If the child thread panics, `Err` is returned with the parameter given /// to `panic`. #[stable(feature = "rust1", since = "1.0.0")] pub fn join(mut self) -> Result<T> { self.0.join() } } /// An RAII-style guard that will block until thread termination when dropped. /// /// The type `T` is the return type for the thread's main function. /// /// Joining on drop is necessary to ensure memory safety when stack /// data is shared between a parent and child thread. /// /// Due to platform restrictions, it is not possible to `Clone` this /// handle: the ability to join a child thread is a uniquely-owned /// permission. #[must_use = "thread will be immediately joined if `JoinGuard` is not used"] #[unstable(feature = "scoped", reason = "memory unsafe if destructor is avoided, see #24292")] pub struct JoinGuard<'a, T: Send + 'a> { inner: JoinInner<T>, _marker: PhantomData<&'a T>, } #[stable(feature = "rust1", since = "1.0.0")] unsafe impl<'a, T: Send + 'a> Sync for JoinGuard<'a, T> {} impl<'a, T: Send + 'a> JoinGuard<'a, T> { /// Extracts a handle to the thread this guard will join on. #[stable(feature = "rust1", since = "1.0.0")] pub fn thread(&self) -> &Thread { &self.inner.thread } /// Waits for the associated thread to finish, returning the result of the /// thread's calculation. /// /// # Panics /// /// Panics on the child thread are propagated by panicking the parent. #[stable(feature = "rust1", since = "1.0.0")] pub fn join(mut self) -> T { match self.inner.join() { Ok(res) => res, Err(_) => panic!("child thread {:?} panicked", self.thread()), } } } #[unstable(feature = "scoped", reason = "memory unsafe if destructor is avoided, see #24292")] impl<'a, T: Send + 'a> Drop for JoinGuard<'a, T> { fn drop(&mut self) { if self.inner.native.is_some() && self.inner.join().is_err() { panic!("child thread {:?} panicked", self.thread()); } } } fn _assert_sync_and_send() { fn _assert_both<T: Send + Sync>() {} _assert_both::<JoinHandle<()>>(); _assert_both::<JoinGuard<()>>(); _assert_both::<Thread>(); } //////////////////////////////////////////////////////////////////////////////// // Tests //////////////////////////////////////////////////////////////////////////////// #[cfg(test)] mod tests { use prelude::v1::*; use any::Any; use sync::mpsc::{channel, Sender}; use result; use super::{Builder}; use thread; use thunk::Thunk; use time::Duration; use u32; // !!! These tests are dangerous. If something is buggy, they will hang, !!! // !!! instead of exiting cleanly. This might wedge the buildbots. !!! #[test] fn test_unnamed_thread() { thread::spawn(move|| { assert!(thread::current().name().is_none()); }).join().ok().unwrap(); } #[test] fn test_named_thread() { Builder::new().name("ada lovelace".to_string()).scoped(move|| { assert!(thread::current().name().unwrap() == "ada lovelace".to_string()); }).unwrap().join(); } #[test] fn test_run_basic() { let (tx, rx) = channel(); thread::spawn(move|| { tx.send(()).unwrap(); }); rx.recv().unwrap(); } #[test] fn test_join_success() { assert!(thread::scoped(move|| -> String { "Success!".to_string() }).join() == "Success!"); } #[test] fn test_join_panic() { match thread::spawn(move|| { panic!() }).join() { result::Result::Err(_) => (), result::Result::Ok(()) => panic!() } } #[test] fn test_scoped_success() { let res = thread::scoped(move|| -> String { "Success!".to_string() }).join(); assert!(res == "Success!"); } #[test] #[should_panic] fn test_scoped_panic() { thread::scoped(|| panic!()).join(); } #[test] #[should_panic] fn test_scoped_implicit_panic() { let _ = thread::scoped(|| panic!()); } #[test] fn test_spawn_sched() { use clone::Clone; let (tx, rx) = channel(); fn f(i: i32, tx: Sender<()>) { let tx = tx.clone(); thread::spawn(move|| { if i == 0 { tx.send(()).unwrap(); } else { f(i - 1, tx); } }); } f(10, tx); rx.recv().unwrap(); } #[test] fn test_spawn_sched_childs_on_default_sched() { let (tx, rx) = channel(); thread::spawn(move|| { thread::spawn(move|| { tx.send(()).unwrap(); }); }); rx.recv().unwrap(); } fn avoid_copying_the_body<F>(spawnfn: F) where F: FnOnce(Thunk<'static>) { let (tx, rx) = channel(); let x: Box<_> = box 1; let x_in_parent = (&*x) as *const i32 as usize; spawnfn(Box::new(move|| { let x_in_child = (&*x) as *const i32 as usize; tx.send(x_in_child).unwrap(); })); let x_in_child = rx.recv().unwrap(); assert_eq!(x_in_parent, x_in_child); } #[test] fn test_avoid_copying_the_body_spawn() { avoid_copying_the_body(|v| { thread::spawn(move || v()); }); } #[test] fn test_avoid_copying_the_body_thread_spawn() { avoid_copying_the_body(|f| { thread::spawn(move|| { f(); }); }) } #[test] fn test_avoid_copying_the_body_join() { avoid_copying_the_body(|f| { let _ = thread::spawn(move|| { f() }).join(); }) } #[test] fn test_child_doesnt_ref_parent() { // If the child refcounts the parent thread, this will stack overflow when // climbing the thread tree to dereference each ancestor. (See #1789) // (well, it would if the constant were 8000+ - I lowered it to be more // valgrind-friendly. try this at home, instead..!) const GENERATIONS: u32 = 16; fn child_no(x: u32) -> Thunk<'static> { return Box::new(move|| { if x < GENERATIONS { thread::spawn(move|| child_no(x+1)()); } }); } thread::spawn(|| child_no(0)()); } #[test] fn test_simple_newsched_spawn() { thread::spawn(move || {}); } #[test] fn test_try_panic_message_static_str() { match thread::spawn(move|| { panic!("static string"); }).join() { Err(e) => { type T = &'static str; assert!(e.is::<T>()); assert_eq!(*e.downcast::<T>().unwrap(), "static string"); } Ok(()) => panic!() } } #[test] fn test_try_panic_message_owned_str() { match thread::spawn(move|| { panic!("owned string".to_string()); }).join() { Err(e) => { type T = String; assert!(e.is::<T>()); assert_eq!(*e.downcast::<T>().unwrap(), "owned string".to_string()); } Ok(()) => panic!() } } #[test] fn test_try_panic_message_any() { match thread::spawn(move|| { panic!(box 413u16 as Box<Any + Send>); }).join() { Err(e) => { type T = Box<Any + Send>; assert!(e.is::<T>()); let any = e.downcast::<T>().unwrap(); assert!(any.is::<u16>()); assert_eq!(*any.downcast::<u16>().unwrap(), 413); } Ok(()) => panic!() } } #[test] fn test_try_panic_message_unit_struct() { struct Juju; match thread::spawn(move|| { panic!(Juju) }).join() { Err(ref e) if e.is::<Juju>() => {} Err(_) | Ok(()) => panic!() } } #[test] fn test_park_timeout_unpark_before() { for _ in 0..10 { thread::current().unpark(); thread::park_timeout_ms(u32::MAX); } } #[test] fn test_park_timeout_unpark_not_called() { for _ in 0..10 { thread::park_timeout_ms(10); } } #[test] fn test_park_timeout_unpark_called_other_thread() { for _ in 0..10 { let th = thread::current(); let _guard = thread::spawn(move || { super::sleep_ms(50); th.unpark(); }); thread::park_timeout_ms(u32::MAX); } } #[test] fn sleep_ms_smoke() { thread::sleep_ms(2); } // NOTE: the corresponding test for stderr is in run-pass/thread-stderr, due // to the test harness apparently interfering with stderr configuration. }