1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Basic functions for dealing with memory //! //! This module contains functions for querying the size and alignment of //! types, initializing and manipulating memory. #![stable(feature = "rust1", since = "1.0.0")] use marker::Sized; use intrinsics; use ptr; #[stable(feature = "rust1", since = "1.0.0")] pub use intrinsics::transmute; /// Leaks a value into the void, consuming ownership and never running its /// destructor. /// /// This function will take ownership of its argument, but is distinct from the /// `mem::drop` function in that it **does not run the destructor**, leaking the /// value and any resources that it owns. /// /// # Safety /// /// This function is not marked as `unsafe` as Rust does not guarantee that the /// `Drop` implementation for a value will always run. Note, however, that /// leaking resources such as memory or I/O objects is likely not desired, so /// this function is only recommended for specialized use cases. /// /// The safety of this function implies that when writing `unsafe` code /// yourself care must be taken when leveraging a destructor that is required to /// run to preserve memory safety. There are known situations where the /// destructor may not run (such as if ownership of the object with the /// destructor is returned) which must be taken into account. /// /// # Other forms of Leakage /// /// It's important to point out that this function is not the only method by /// which a value can be leaked in safe Rust code. Other known sources of /// leakage are: /// /// * `Rc` and `Arc` cycles /// * `mpsc::{Sender, Receiver}` cycles (they use `Arc` internally) /// * Panicking destructors are likely to leak local resources /// /// # Example /// /// ```rust,no_run /// use std::mem; /// use std::fs::File; /// /// // Leak some heap memory by never deallocating it /// let heap_memory = Box::new(3); /// mem::forget(heap_memory); /// /// // Leak an I/O object, never closing the file /// let file = File::open("foo.txt").unwrap(); /// mem::forget(file); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn forget<T>(t: T) { unsafe { intrinsics::forget(t) } } /// Returns the size of a type in bytes. /// /// # Examples /// /// ``` /// use std::mem; /// /// assert_eq!(4, mem::size_of::<i32>()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn size_of<T>() -> usize { unsafe { intrinsics::size_of::<T>() } } /// Returns the size of the type that `val` points to in bytes. /// /// # Examples /// /// ``` /// use std::mem; /// /// assert_eq!(4, mem::size_of_val(&5i32)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn size_of_val<T: ?Sized>(val: &T) -> usize { unsafe { intrinsics::size_of_val(val) } } /// Returns the ABI-required minimum alignment of a type /// /// This is the alignment used for struct fields. It may be smaller than the preferred alignment. /// /// # Examples /// /// ``` /// use std::mem; /// /// assert_eq!(4, mem::min_align_of::<i32>()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn min_align_of<T>() -> usize { unsafe { intrinsics::min_align_of::<T>() } } /// Returns the ABI-required minimum alignment of the type of the value that `val` points to /// /// # Examples /// /// ``` /// use std::mem; /// /// assert_eq!(4, mem::min_align_of_val(&5i32)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn min_align_of_val<T: ?Sized>(val: &T) -> usize { unsafe { intrinsics::min_align_of_val(val) } } /// Returns the alignment in memory for a type. /// /// This function will return the alignment, in bytes, of a type in memory. If the alignment /// returned is adhered to, then the type is guaranteed to function properly. /// /// # Examples /// /// ``` /// use std::mem; /// /// assert_eq!(4, mem::align_of::<i32>()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn align_of<T>() -> usize { // We use the preferred alignment as the default alignment for a type. This // appears to be what clang migrated towards as well: // // http://lists.cs.uiuc.edu/pipermail/cfe-commits/Week-of-Mon-20110725/044411.html unsafe { intrinsics::pref_align_of::<T>() } } /// Returns the alignment of the type of the value that `_val` points to. /// /// This is similar to `align_of`, but function will properly handle types such as trait objects /// (in the future), returning the alignment for an arbitrary value at runtime. /// /// # Examples /// /// ``` /// use std::mem; /// /// assert_eq!(4, mem::align_of_val(&5i32)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn align_of_val<T>(_val: &T) -> usize { align_of::<T>() } /// Creates a value initialized to zero. /// /// This function is similar to allocating space for a local variable and zeroing it out (an unsafe /// operation). /// /// Care must be taken when using this function, if the type `T` has a destructor and the value /// falls out of scope (due to unwinding or returning) before being initialized, then the /// destructor will run on zeroed data, likely leading to crashes. /// /// This is useful for FFI functions sometimes, but should generally be avoided. /// /// # Examples /// /// ``` /// use std::mem; /// /// let x: i32 = unsafe { mem::zeroed() }; /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub unsafe fn zeroed<T>() -> T { intrinsics::init() } /// Creates a value initialized to an unspecified series of bytes. /// /// The byte sequence usually indicates that the value at the memory /// in question has been dropped. Thus, *if* T carries a drop flag, /// any associated destructor will not be run when the value falls out /// of scope. /// /// Some code at one time used the `zeroed` function above to /// accomplish this goal. /// /// This function is expected to be deprecated with the transition /// to non-zeroing drop. #[inline] #[unstable(feature = "filling_drop")] pub unsafe fn dropped<T>() -> T { #[inline(always)] unsafe fn dropped_impl<T>() -> T { intrinsics::init_dropped() } dropped_impl() } /// Creates an uninitialized value. /// /// Care must be taken when using this function, if the type `T` has a destructor and the value /// falls out of scope (due to unwinding or returning) before being initialized, then the /// destructor will run on uninitialized data, likely leading to crashes. /// /// This is useful for FFI functions sometimes, but should generally be avoided. /// /// # Examples /// /// ``` /// use std::mem; /// /// let x: i32 = unsafe { mem::uninitialized() }; /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub unsafe fn uninitialized<T>() -> T { intrinsics::uninit() } /// Swap the values at two mutable locations of the same type, without deinitialising or copying /// either one. /// /// # Examples /// /// ``` /// use std::mem; /// /// let x = &mut 5; /// let y = &mut 42; /// /// mem::swap(x, y); /// /// assert_eq!(42, *x); /// assert_eq!(5, *y); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn swap<T>(x: &mut T, y: &mut T) { unsafe { // Give ourselves some scratch space to work with let mut t: T = uninitialized(); // Perform the swap, `&mut` pointers never alias ptr::copy_nonoverlapping(&*x, &mut t, 1); ptr::copy_nonoverlapping(&*y, x, 1); ptr::copy_nonoverlapping(&t, y, 1); // y and t now point to the same thing, but we need to completely forget `t` // because it's no longer relevant. forget(t); } } /// Replaces the value at a mutable location with a new one, returning the old value, without /// deinitialising or copying either one. /// /// This is primarily used for transferring and swapping ownership of a value in a mutable /// location. /// /// # Examples /// /// A simple example: /// /// ``` /// use std::mem; /// /// let mut v: Vec<i32> = Vec::new(); /// /// mem::replace(&mut v, Vec::new()); /// ``` /// /// This function allows consumption of one field of a struct by replacing it with another value. /// The normal approach doesn't always work: /// /// ```rust,ignore /// struct Buffer<T> { buf: Vec<T> } /// /// impl<T> Buffer<T> { /// fn get_and_reset(&mut self) -> Vec<T> { /// // error: cannot move out of dereference of `&mut`-pointer /// let buf = self.buf; /// self.buf = Vec::new(); /// buf /// } /// } /// ``` /// /// Note that `T` does not necessarily implement `Clone`, so it can't even clone and reset /// `self.buf`. But `replace` can be used to disassociate the original value of `self.buf` from /// `self`, allowing it to be returned: /// /// ``` /// use std::mem; /// # struct Buffer<T> { buf: Vec<T> } /// impl<T> Buffer<T> { /// fn get_and_reset(&mut self) -> Vec<T> { /// mem::replace(&mut self.buf, Vec::new()) /// } /// } /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn replace<T>(dest: &mut T, mut src: T) -> T { swap(dest, &mut src); src } /// Disposes of a value. /// /// This function can be used to destroy any value by allowing `drop` to take ownership of its /// argument. /// /// # Examples /// /// ``` /// use std::cell::RefCell; /// /// let x = RefCell::new(1); /// /// let mut mutable_borrow = x.borrow_mut(); /// *mutable_borrow = 1; /// /// drop(mutable_borrow); // relinquish the mutable borrow on this slot /// /// let borrow = x.borrow(); /// println!("{}", *borrow); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn drop<T>(_x: T) { } macro_rules! repeat_u8_as_u32 { ($name:expr) => { (($name as u32) << 24 | ($name as u32) << 16 | ($name as u32) << 8 | ($name as u32)) } } macro_rules! repeat_u8_as_u64 { ($name:expr) => { ((repeat_u8_as_u32!($name) as u64) << 32 | (repeat_u8_as_u32!($name) as u64)) } } // NOTE: Keep synchronized with values used in librustc_trans::trans::adt. // // In particular, the POST_DROP_U8 marker must never equal the // DTOR_NEEDED_U8 marker. // // For a while pnkfelix was using 0xc1 here. // But having the sign bit set is a pain, so 0x1d is probably better. // // And of course, 0x00 brings back the old world of zero'ing on drop. #[unstable(feature = "filling_drop")] pub const POST_DROP_U8: u8 = 0x1d; #[unstable(feature = "filling_drop")] pub const POST_DROP_U32: u32 = repeat_u8_as_u32!(POST_DROP_U8); #[unstable(feature = "filling_drop")] pub const POST_DROP_U64: u64 = repeat_u8_as_u64!(POST_DROP_U8); #[cfg(target_pointer_width = "32")] #[unstable(feature = "filling_drop")] pub const POST_DROP_USIZE: usize = POST_DROP_U32 as usize; #[cfg(target_pointer_width = "64")] #[unstable(feature = "filling_drop")] pub const POST_DROP_USIZE: usize = POST_DROP_U64 as usize; /// Interprets `src` as `&U`, and then reads `src` without moving the contained /// value. /// /// This function will unsafely assume the pointer `src` is valid for /// `sizeof(U)` bytes by transmuting `&T` to `&U` and then reading the `&U`. It /// will also unsafely create a copy of the contained value instead of moving /// out of `src`. /// /// It is not a compile-time error if `T` and `U` have different sizes, but it /// is highly encouraged to only invoke this function where `T` and `U` have the /// same size. This function triggers undefined behavior if `U` is larger than /// `T`. /// /// # Examples /// /// ``` /// use std::mem; /// /// let one = unsafe { mem::transmute_copy(&1) }; /// /// assert_eq!(1, one); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub unsafe fn transmute_copy<T, U>(src: &T) -> U { // FIXME(#23542) Replace with type ascription. #![allow(trivial_casts)] ptr::read(src as *const T as *const U) } /// Transforms lifetime of the second pointer to match the first. #[inline] #[unstable(feature = "core", reason = "this function may be removed in the future due to its \ questionable utility")] pub unsafe fn copy_lifetime<'a, S: ?Sized, T: ?Sized + 'a>(_ptr: &'a S, ptr: &T) -> &'a T { transmute(ptr) } /// Transforms lifetime of the second mutable pointer to match the first. #[inline] #[unstable(feature = "core", reason = "this function may be removed in the future due to its \ questionable utility")] pub unsafe fn copy_mut_lifetime<'a, S: ?Sized, T: ?Sized + 'a>(_ptr: &'a S, ptr: &mut T) -> &'a mut T { transmute(ptr) }