1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! rustc compiler intrinsics. //! //! The corresponding definitions are in librustc_trans/trans/intrinsic.rs. //! //! # Volatiles //! //! The volatile intrinsics provide operations intended to act on I/O //! memory, which are guaranteed to not be reordered by the compiler //! across other volatile intrinsics. See the LLVM documentation on //! [[volatile]]. //! //! [volatile]: http://llvm.org/docs/LangRef.html#volatile-memory-accesses //! //! # Atomics //! //! The atomic intrinsics provide common atomic operations on machine //! words, with multiple possible memory orderings. They obey the same //! semantics as C++11. See the LLVM documentation on [[atomics]]. //! //! [atomics]: http://llvm.org/docs/Atomics.html //! //! A quick refresher on memory ordering: //! //! * Acquire - a barrier for acquiring a lock. Subsequent reads and writes //! take place after the barrier. //! * Release - a barrier for releasing a lock. Preceding reads and writes //! take place before the barrier. //! * Sequentially consistent - sequentially consistent operations are //! guaranteed to happen in order. This is the standard mode for working //! with atomic types and is equivalent to Java's `volatile`. #![unstable(feature = "core")] #![allow(missing_docs)] use marker::Sized; extern "rust-intrinsic" { // NB: These intrinsics take unsafe pointers because they mutate aliased // memory, which is not valid for either `&` or `&mut`. pub fn atomic_cxchg<T>(dst: *mut T, old: T, src: T) -> T; pub fn atomic_cxchg_acq<T>(dst: *mut T, old: T, src: T) -> T; pub fn atomic_cxchg_rel<T>(dst: *mut T, old: T, src: T) -> T; pub fn atomic_cxchg_acqrel<T>(dst: *mut T, old: T, src: T) -> T; pub fn atomic_cxchg_relaxed<T>(dst: *mut T, old: T, src: T) -> T; pub fn atomic_load<T>(src: *const T) -> T; pub fn atomic_load_acq<T>(src: *const T) -> T; pub fn atomic_load_relaxed<T>(src: *const T) -> T; pub fn atomic_load_unordered<T>(src: *const T) -> T; pub fn atomic_store<T>(dst: *mut T, val: T); pub fn atomic_store_rel<T>(dst: *mut T, val: T); pub fn atomic_store_relaxed<T>(dst: *mut T, val: T); pub fn atomic_store_unordered<T>(dst: *mut T, val: T); pub fn atomic_xchg<T>(dst: *mut T, src: T) -> T; pub fn atomic_xchg_acq<T>(dst: *mut T, src: T) -> T; pub fn atomic_xchg_rel<T>(dst: *mut T, src: T) -> T; pub fn atomic_xchg_acqrel<T>(dst: *mut T, src: T) -> T; pub fn atomic_xchg_relaxed<T>(dst: *mut T, src: T) -> T; pub fn atomic_xadd<T>(dst: *mut T, src: T) -> T; pub fn atomic_xadd_acq<T>(dst: *mut T, src: T) -> T; pub fn atomic_xadd_rel<T>(dst: *mut T, src: T) -> T; pub fn atomic_xadd_acqrel<T>(dst: *mut T, src: T) -> T; pub fn atomic_xadd_relaxed<T>(dst: *mut T, src: T) -> T; pub fn atomic_xsub<T>(dst: *mut T, src: T) -> T; pub fn atomic_xsub_acq<T>(dst: *mut T, src: T) -> T; pub fn atomic_xsub_rel<T>(dst: *mut T, src: T) -> T; pub fn atomic_xsub_acqrel<T>(dst: *mut T, src: T) -> T; pub fn atomic_xsub_relaxed<T>(dst: *mut T, src: T) -> T; pub fn atomic_and<T>(dst: *mut T, src: T) -> T; pub fn atomic_and_acq<T>(dst: *mut T, src: T) -> T; pub fn atomic_and_rel<T>(dst: *mut T, src: T) -> T; pub fn atomic_and_acqrel<T>(dst: *mut T, src: T) -> T; pub fn atomic_and_relaxed<T>(dst: *mut T, src: T) -> T; pub fn atomic_nand<T>(dst: *mut T, src: T) -> T; pub fn atomic_nand_acq<T>(dst: *mut T, src: T) -> T; pub fn atomic_nand_rel<T>(dst: *mut T, src: T) -> T; pub fn atomic_nand_acqrel<T>(dst: *mut T, src: T) -> T; pub fn atomic_nand_relaxed<T>(dst: *mut T, src: T) -> T; pub fn atomic_or<T>(dst: *mut T, src: T) -> T; pub fn atomic_or_acq<T>(dst: *mut T, src: T) -> T; pub fn atomic_or_rel<T>(dst: *mut T, src: T) -> T; pub fn atomic_or_acqrel<T>(dst: *mut T, src: T) -> T; pub fn atomic_or_relaxed<T>(dst: *mut T, src: T) -> T; pub fn atomic_xor<T>(dst: *mut T, src: T) -> T; pub fn atomic_xor_acq<T>(dst: *mut T, src: T) -> T; pub fn atomic_xor_rel<T>(dst: *mut T, src: T) -> T; pub fn atomic_xor_acqrel<T>(dst: *mut T, src: T) -> T; pub fn atomic_xor_relaxed<T>(dst: *mut T, src: T) -> T; pub fn atomic_max<T>(dst: *mut T, src: T) -> T; pub fn atomic_max_acq<T>(dst: *mut T, src: T) -> T; pub fn atomic_max_rel<T>(dst: *mut T, src: T) -> T; pub fn atomic_max_acqrel<T>(dst: *mut T, src: T) -> T; pub fn atomic_max_relaxed<T>(dst: *mut T, src: T) -> T; pub fn atomic_min<T>(dst: *mut T, src: T) -> T; pub fn atomic_min_acq<T>(dst: *mut T, src: T) -> T; pub fn atomic_min_rel<T>(dst: *mut T, src: T) -> T; pub fn atomic_min_acqrel<T>(dst: *mut T, src: T) -> T; pub fn atomic_min_relaxed<T>(dst: *mut T, src: T) -> T; pub fn atomic_umin<T>(dst: *mut T, src: T) -> T; pub fn atomic_umin_acq<T>(dst: *mut T, src: T) -> T; pub fn atomic_umin_rel<T>(dst: *mut T, src: T) -> T; pub fn atomic_umin_acqrel<T>(dst: *mut T, src: T) -> T; pub fn atomic_umin_relaxed<T>(dst: *mut T, src: T) -> T; pub fn atomic_umax<T>(dst: *mut T, src: T) -> T; pub fn atomic_umax_acq<T>(dst: *mut T, src: T) -> T; pub fn atomic_umax_rel<T>(dst: *mut T, src: T) -> T; pub fn atomic_umax_acqrel<T>(dst: *mut T, src: T) -> T; pub fn atomic_umax_relaxed<T>(dst: *mut T, src: T) -> T; } extern "rust-intrinsic" { pub fn atomic_fence(); pub fn atomic_fence_acq(); pub fn atomic_fence_rel(); pub fn atomic_fence_acqrel(); /// A compiler-only memory barrier. /// /// Memory accesses will never be reordered across this barrier by the compiler, /// but no instructions will be emitted for it. This is appropriate for operations /// on the same thread that may be preempted, such as when interacting with signal /// handlers. pub fn atomic_singlethreadfence(); pub fn atomic_singlethreadfence_acq(); pub fn atomic_singlethreadfence_rel(); pub fn atomic_singlethreadfence_acqrel(); /// Aborts the execution of the process. pub fn abort() -> !; /// Tells LLVM that this point in the code is not reachable, /// enabling further optimizations. /// /// NB: This is very different from the `unreachable!()` macro! pub fn unreachable() -> !; /// Informs the optimizer that a condition is always true. /// If the condition is false, the behavior is undefined. /// /// No code is generated for this intrinsic, but the optimizer will try /// to preserve it (and its condition) between passes, which may interfere /// with optimization of surrounding code and reduce performance. It should /// not be used if the invariant can be discovered by the optimizer on its /// own, or if it does not enable any significant optimizations. pub fn assume(b: bool); /// Executes a breakpoint trap, for inspection by a debugger. pub fn breakpoint(); /// The size of a type in bytes. /// /// This is the exact number of bytes in memory taken up by a /// value of the given type. In other words, a memset of this size /// would *exactly* overwrite a value. When laid out in vectors /// and structures there may be additional padding between /// elements. pub fn size_of<T>() -> usize; /// Moves a value to an uninitialized memory location. /// /// Drop glue is not run on the destination. pub fn move_val_init<T>(dst: &mut T, src: T); pub fn min_align_of<T>() -> usize; pub fn pref_align_of<T>() -> usize; pub fn size_of_val<T: ?Sized>(_: &T) -> usize; pub fn min_align_of_val<T: ?Sized>(_: &T) -> usize; pub fn drop_in_place<T: ?Sized>(_: *mut T); /// Gets a static string slice containing the name of a type. pub fn type_name<T: ?Sized>() -> &'static str; /// Gets an identifier which is globally unique to the specified type. This /// function will return the same value for a type regardless of whichever /// crate it is invoked in. pub fn type_id<T: ?Sized + 'static>() -> u64; /// Creates a value initialized to so that its drop flag, /// if any, says that it has been dropped. /// /// `init_dropped` is unsafe because it returns a datum with all /// of its bytes set to the drop flag, which generally does not /// correspond to a valid value. /// /// This intrinsic is likely to be deprecated in the future when /// Rust moves to non-zeroing dynamic drop (and thus removes the /// embedded drop flags that are being established by this /// intrinsic). pub fn init_dropped<T>() -> T; /// Creates a value initialized to zero. /// /// `init` is unsafe because it returns a zeroed-out datum, /// which is unsafe unless T is `Copy`. Also, even if T is /// `Copy`, an all-zero value may not correspond to any legitimate /// state for the type in question. pub fn init<T>() -> T; /// Creates an uninitialized value. /// /// `uninit` is unsafe because there is no guarantee of what its /// contents are. In particular its drop-flag may be set to any /// state, which means it may claim either dropped or /// undropped. In the general case one must use `ptr::write` to /// initialize memory previous set to the result of `uninit`. pub fn uninit<T>() -> T; /// Moves a value out of scope without running drop glue. pub fn forget<T>(_: T) -> (); /// Unsafely transforms a value of one type into a value of another type. /// /// Both types must have the same size. /// /// # Examples /// /// ``` /// use std::mem; /// /// let v: &[u8] = unsafe { mem::transmute("L") }; /// assert!(v == [76]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn transmute<T,U>(e: T) -> U; /// Gives the address for the return value of the enclosing function. /// /// Using this intrinsic in a function that does not use an out pointer /// will trigger a compiler error. pub fn return_address() -> *const u8; /// Returns `true` if the actual type given as `T` requires drop /// glue; returns `false` if the actual type provided for `T` /// implements `Copy`. /// /// If the actual type neither requires drop glue nor implements /// `Copy`, then may return `true` or `false`. pub fn needs_drop<T>() -> bool; /// Calculates the offset from a pointer. /// /// This is implemented as an intrinsic to avoid converting to and from an /// integer, since the conversion would throw away aliasing information. /// /// # Safety /// /// Both the starting and resulting pointer must be either in bounds or one /// byte past the end of an allocated object. If either pointer is out of /// bounds or arithmetic overflow occurs then any further use of the /// returned value will result in undefined behavior. pub fn offset<T>(dst: *const T, offset: isize) -> *const T; /// Calculates the offset from a pointer, potentially wrapping. /// /// This is implemented as an intrinsic to avoid converting to and from an /// integer, since the conversion inhibits certain optimizations. /// /// # Safety /// /// Unlike the `offset` intrinsic, this intrinsic does not restrict the /// resulting pointer to point into or one byte past the end of an allocated /// object, and it wraps with two's complement arithmetic. The resulting /// value is not necessarily valid to be used to actually access memory. pub fn arith_offset<T>(dst: *const T, offset: isize) -> *const T; /// Copies `count * size_of<T>` bytes from `src` to `dst`. The source /// and destination may *not* overlap. /// /// `copy_nonoverlapping` is semantically equivalent to C's `memcpy`. /// /// # Safety /// /// Beyond requiring that the program must be allowed to access both regions /// of memory, it is Undefined Behaviour for source and destination to /// overlap. Care must also be taken with the ownership of `src` and /// `dst`. This method semantically moves the values of `src` into `dst`. /// However it does not drop the contents of `dst`, or prevent the contents /// of `src` from being dropped or used. /// /// # Examples /// /// A safe swap function: /// /// ``` /// # #![feature(core)] /// use std::mem; /// use std::ptr; /// /// fn swap<T>(x: &mut T, y: &mut T) { /// unsafe { /// // Give ourselves some scratch space to work with /// let mut t: T = mem::uninitialized(); /// /// // Perform the swap, `&mut` pointers never alias /// ptr::copy_nonoverlapping(x, &mut t, 1); /// ptr::copy_nonoverlapping(y, x, 1); /// ptr::copy_nonoverlapping(&t, y, 1); /// /// // y and t now point to the same thing, but we need to completely forget `tmp` /// // because it's no longer relevant. /// mem::forget(t); /// } /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize); /// Copies `count * size_of<T>` bytes from `src` to `dst`. The source /// and destination may overlap. /// /// `copy` is semantically equivalent to C's `memmove`. /// /// # Safety /// /// Care must be taken with the ownership of `src` and `dst`. /// This method semantically moves the values of `src` into `dst`. /// However it does not drop the contents of `dst`, or prevent the contents of `src` /// from being dropped or used. /// /// # Examples /// /// Efficiently create a Rust vector from an unsafe buffer: /// /// ``` /// # #![feature(core)] /// use std::ptr; /// /// unsafe fn from_buf_raw<T>(ptr: *const T, elts: usize) -> Vec<T> { /// let mut dst = Vec::with_capacity(elts); /// dst.set_len(elts); /// ptr::copy(ptr, dst.as_mut_ptr(), elts); /// dst /// } /// ``` /// #[stable(feature = "rust1", since = "1.0.0")] pub fn copy<T>(src: *const T, dst: *mut T, count: usize); /// Invokes memset on the specified pointer, setting `count * size_of::<T>()` /// bytes of memory starting at `dst` to `c`. #[stable(feature = "rust1", since = "1.0.0")] pub fn write_bytes<T>(dst: *mut T, val: u8, count: usize); /// Equivalent to the appropriate `llvm.memcpy.p0i8.0i8.*` intrinsic, with /// a size of `count` * `size_of::<T>()` and an alignment of /// `min_align_of::<T>()` /// /// The volatile parameter parameter is set to `true`, so it will not be optimized out. pub fn volatile_copy_nonoverlapping_memory<T>(dst: *mut T, src: *const T, count: usize); /// Equivalent to the appropriate `llvm.memmove.p0i8.0i8.*` intrinsic, with /// a size of `count` * `size_of::<T>()` and an alignment of /// `min_align_of::<T>()` /// /// The volatile parameter parameter is set to `true`, so it will not be optimized out. pub fn volatile_copy_memory<T>(dst: *mut T, src: *const T, count: usize); /// Equivalent to the appropriate `llvm.memset.p0i8.*` intrinsic, with a /// size of `count` * `size_of::<T>()` and an alignment of /// `min_align_of::<T>()`. /// /// The volatile parameter parameter is set to `true`, so it will not be optimized out. pub fn volatile_set_memory<T>(dst: *mut T, val: u8, count: usize); /// Perform a volatile load from the `src` pointer. pub fn volatile_load<T>(src: *const T) -> T; /// Perform a volatile store to the `dst` pointer. pub fn volatile_store<T>(dst: *mut T, val: T); /// Returns the square root of an `f32` pub fn sqrtf32(x: f32) -> f32; /// Returns the square root of an `f64` pub fn sqrtf64(x: f64) -> f64; /// Raises an `f32` to an integer power. pub fn powif32(a: f32, x: i32) -> f32; /// Raises an `f64` to an integer power. pub fn powif64(a: f64, x: i32) -> f64; /// Returns the sine of an `f32`. pub fn sinf32(x: f32) -> f32; /// Returns the sine of an `f64`. pub fn sinf64(x: f64) -> f64; /// Returns the cosine of an `f32`. pub fn cosf32(x: f32) -> f32; /// Returns the cosine of an `f64`. pub fn cosf64(x: f64) -> f64; /// Raises an `f32` to an `f32` power. pub fn powf32(a: f32, x: f32) -> f32; /// Raises an `f64` to an `f64` power. pub fn powf64(a: f64, x: f64) -> f64; /// Returns the exponential of an `f32`. pub fn expf32(x: f32) -> f32; /// Returns the exponential of an `f64`. pub fn expf64(x: f64) -> f64; /// Returns 2 raised to the power of an `f32`. pub fn exp2f32(x: f32) -> f32; /// Returns 2 raised to the power of an `f64`. pub fn exp2f64(x: f64) -> f64; /// Returns the natural logarithm of an `f32`. pub fn logf32(x: f32) -> f32; /// Returns the natural logarithm of an `f64`. pub fn logf64(x: f64) -> f64; /// Returns the base 10 logarithm of an `f32`. pub fn log10f32(x: f32) -> f32; /// Returns the base 10 logarithm of an `f64`. pub fn log10f64(x: f64) -> f64; /// Returns the base 2 logarithm of an `f32`. pub fn log2f32(x: f32) -> f32; /// Returns the base 2 logarithm of an `f64`. pub fn log2f64(x: f64) -> f64; /// Returns `a * b + c` for `f32` values. pub fn fmaf32(a: f32, b: f32, c: f32) -> f32; /// Returns `a * b + c` for `f64` values. pub fn fmaf64(a: f64, b: f64, c: f64) -> f64; /// Returns the absolute value of an `f32`. pub fn fabsf32(x: f32) -> f32; /// Returns the absolute value of an `f64`. pub fn fabsf64(x: f64) -> f64; /// Copies the sign from `y` to `x` for `f32` values. pub fn copysignf32(x: f32, y: f32) -> f32; /// Copies the sign from `y` to `x` for `f64` values. pub fn copysignf64(x: f64, y: f64) -> f64; /// Returns the largest integer less than or equal to an `f32`. pub fn floorf32(x: f32) -> f32; /// Returns the largest integer less than or equal to an `f64`. pub fn floorf64(x: f64) -> f64; /// Returns the smallest integer greater than or equal to an `f32`. pub fn ceilf32(x: f32) -> f32; /// Returns the smallest integer greater than or equal to an `f64`. pub fn ceilf64(x: f64) -> f64; /// Returns the integer part of an `f32`. pub fn truncf32(x: f32) -> f32; /// Returns the integer part of an `f64`. pub fn truncf64(x: f64) -> f64; /// Returns the nearest integer to an `f32`. May raise an inexact floating-point exception /// if the argument is not an integer. pub fn rintf32(x: f32) -> f32; /// Returns the nearest integer to an `f64`. May raise an inexact floating-point exception /// if the argument is not an integer. pub fn rintf64(x: f64) -> f64; /// Returns the nearest integer to an `f32`. pub fn nearbyintf32(x: f32) -> f32; /// Returns the nearest integer to an `f64`. pub fn nearbyintf64(x: f64) -> f64; /// Returns the nearest integer to an `f32`. Rounds half-way cases away from zero. pub fn roundf32(x: f32) -> f32; /// Returns the nearest integer to an `f64`. Rounds half-way cases away from zero. pub fn roundf64(x: f64) -> f64; /// Returns the number of bits set in a `u8`. pub fn ctpop8(x: u8) -> u8; /// Returns the number of bits set in a `u16`. pub fn ctpop16(x: u16) -> u16; /// Returns the number of bits set in a `u32`. pub fn ctpop32(x: u32) -> u32; /// Returns the number of bits set in a `u64`. pub fn ctpop64(x: u64) -> u64; /// Returns the number of leading bits unset in a `u8`. pub fn ctlz8(x: u8) -> u8; /// Returns the number of leading bits unset in a `u16`. pub fn ctlz16(x: u16) -> u16; /// Returns the number of leading bits unset in a `u32`. pub fn ctlz32(x: u32) -> u32; /// Returns the number of leading bits unset in a `u64`. pub fn ctlz64(x: u64) -> u64; /// Returns the number of trailing bits unset in a `u8`. pub fn cttz8(x: u8) -> u8; /// Returns the number of trailing bits unset in a `u16`. pub fn cttz16(x: u16) -> u16; /// Returns the number of trailing bits unset in a `u32`. pub fn cttz32(x: u32) -> u32; /// Returns the number of trailing bits unset in a `u64`. pub fn cttz64(x: u64) -> u64; /// Reverses the bytes in a `u16`. pub fn bswap16(x: u16) -> u16; /// Reverses the bytes in a `u32`. pub fn bswap32(x: u32) -> u32; /// Reverses the bytes in a `u64`. pub fn bswap64(x: u64) -> u64; /// Performs checked `i8` addition. pub fn i8_add_with_overflow(x: i8, y: i8) -> (i8, bool); /// Performs checked `i16` addition. pub fn i16_add_with_overflow(x: i16, y: i16) -> (i16, bool); /// Performs checked `i32` addition. pub fn i32_add_with_overflow(x: i32, y: i32) -> (i32, bool); /// Performs checked `i64` addition. pub fn i64_add_with_overflow(x: i64, y: i64) -> (i64, bool); /// Performs checked `u8` addition. pub fn u8_add_with_overflow(x: u8, y: u8) -> (u8, bool); /// Performs checked `u16` addition. pub fn u16_add_with_overflow(x: u16, y: u16) -> (u16, bool); /// Performs checked `u32` addition. pub fn u32_add_with_overflow(x: u32, y: u32) -> (u32, bool); /// Performs checked `u64` addition. pub fn u64_add_with_overflow(x: u64, y: u64) -> (u64, bool); /// Performs checked `i8` subtraction. pub fn i8_sub_with_overflow(x: i8, y: i8) -> (i8, bool); /// Performs checked `i16` subtraction. pub fn i16_sub_with_overflow(x: i16, y: i16) -> (i16, bool); /// Performs checked `i32` subtraction. pub fn i32_sub_with_overflow(x: i32, y: i32) -> (i32, bool); /// Performs checked `i64` subtraction. pub fn i64_sub_with_overflow(x: i64, y: i64) -> (i64, bool); /// Performs checked `u8` subtraction. pub fn u8_sub_with_overflow(x: u8, y: u8) -> (u8, bool); /// Performs checked `u16` subtraction. pub fn u16_sub_with_overflow(x: u16, y: u16) -> (u16, bool); /// Performs checked `u32` subtraction. pub fn u32_sub_with_overflow(x: u32, y: u32) -> (u32, bool); /// Performs checked `u64` subtraction. pub fn u64_sub_with_overflow(x: u64, y: u64) -> (u64, bool); /// Performs checked `i8` multiplication. pub fn i8_mul_with_overflow(x: i8, y: i8) -> (i8, bool); /// Performs checked `i16` multiplication. pub fn i16_mul_with_overflow(x: i16, y: i16) -> (i16, bool); /// Performs checked `i32` multiplication. pub fn i32_mul_with_overflow(x: i32, y: i32) -> (i32, bool); /// Performs checked `i64` multiplication. pub fn i64_mul_with_overflow(x: i64, y: i64) -> (i64, bool); /// Performs checked `u8` multiplication. pub fn u8_mul_with_overflow(x: u8, y: u8) -> (u8, bool); /// Performs checked `u16` multiplication. pub fn u16_mul_with_overflow(x: u16, y: u16) -> (u16, bool); /// Performs checked `u32` multiplication. pub fn u32_mul_with_overflow(x: u32, y: u32) -> (u32, bool); /// Performs checked `u64` multiplication. pub fn u64_mul_with_overflow(x: u64, y: u64) -> (u64, bool); /// Returns (a + b) mod 2^N, where N is the width of N in bits. pub fn overflowing_add<T>(a: T, b: T) -> T; /// Returns (a - b) mod 2^N, where N is the width of N in bits. pub fn overflowing_sub<T>(a: T, b: T) -> T; /// Returns (a * b) mod 2^N, where N is the width of N in bits. pub fn overflowing_mul<T>(a: T, b: T) -> T; /// Performs an unchecked signed division, which results in undefined behavior, /// in cases where y == 0, or x == int::MIN and y == -1 pub fn unchecked_sdiv<T>(x: T, y: T) -> T; /// Performs an unchecked unsigned division, which results in undefined behavior, /// in cases where y == 0 pub fn unchecked_udiv<T>(x: T, y: T) -> T; /// Returns the remainder of an unchecked signed division, which results in /// undefined behavior, in cases where y == 0, or x == int::MIN and y == -1 pub fn unchecked_urem<T>(x: T, y: T) -> T; /// Returns the remainder of an unchecked signed division, which results in /// undefined behavior, in cases where y == 0 pub fn unchecked_srem<T>(x: T, y: T) -> T; /// Returns the value of the discriminant for the variant in 'v', /// cast to a `u64`; if `T` has no discriminant, returns 0. pub fn discriminant_value<T>(v: &T) -> u64; }