1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A pointer type for heap allocation.
//!
//! `Box<T>`, casually referred to as a 'box', provides the simplest form of heap allocation in
//! Rust. Boxes provide ownership for this allocation, and drop their contents when they go out of
//! scope.
//!
//! # Examples
//!
//! Creating a box:
//!
//! ```
//! let x = Box::new(5);
//! ```
//!
//! Creating a recursive data structure:
//!
//! ```
//! #[derive(Debug)]
//! enum List<T> {
//!     Cons(T, Box<List<T>>),
//!     Nil,
//! }
//!
//! fn main() {
//!     let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
//!     println!("{:?}", list);
//! }
//! ```
//!
//! This will print `Cons(1, Cons(2, Nil))`.
//!
//! Recursive structures must be boxed, because if the definition of `Cons` looked like this:
//!
//! ```rust,ignore
//! Cons(T, List<T>),
//! ```
//!
//! It wouldn't work. This is because the size of a `List` depends on how many elements are in the
//! list, and so we don't know how much memory to allocate for a `Cons`. By introducing a `Box`,
//! which has a defined size, we know how big `Cons` needs to be.

#![stable(feature = "rust1", since = "1.0.0")]

use core::prelude::*;

use core::any::Any;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{self, Hash};
use core::marker::Unsize;
use core::mem;
use core::ops::{CoerceUnsized, Deref, DerefMut};
use core::ptr::{Unique};
use core::raw::{TraitObject};

/// A value that represents the heap. This is the default place that the `box`
/// keyword allocates into when no place is supplied.
///
/// The following two examples are equivalent:
///
/// ```
/// # #![feature(alloc)]
/// #![feature(box_syntax)]
/// use std::boxed::HEAP;
///
/// fn main() {
///     let foo = box(HEAP) 5;
///     let foo = box 5;
/// }
/// ```
#[lang = "exchange_heap"]
#[unstable(feature = "alloc",
           reason = "may be renamed; uncertain about custom allocator design")]
pub static HEAP: () = ();

/// A pointer type for heap allocation.
///
/// See the [module-level documentation](../../std/boxed/index.html) for more.
#[lang = "owned_box"]
#[stable(feature = "rust1", since = "1.0.0")]
#[fundamental]
pub struct Box<T>(Unique<T>);

impl<T> Box<T> {
    /// Allocates memory on the heap and then moves `x` into it.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = Box::new(5);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline(always)]
    pub fn new(x: T) -> Box<T> {
        box x
    }
}

impl<T : ?Sized> Box<T> {
    /// Constructs a box from the raw pointer.
    ///
    /// After this function call, pointer is owned by resulting box.
    /// In particular, it means that `Box` destructor calls destructor
    /// of `T` and releases memory. Since the way `Box` allocates and
    /// releases memory is unspecified, the only valid pointer to pass
    /// to this function is the one taken from another `Box` with
    /// `boxed::into_raw` function.
    ///
    /// Function is unsafe, because improper use of this function may
    /// lead to memory problems like double-free, for example if the
    /// function is called twice on the same raw pointer.
    #[unstable(feature = "alloc",
               reason = "may be renamed or moved out of Box scope")]
    #[inline]
    pub unsafe fn from_raw(raw: *mut T) -> Self {
        mem::transmute(raw)
    }
}

/// Consumes the `Box`, returning the wrapped raw pointer.
///
/// After call to this function, caller is responsible for the memory
/// previously managed by `Box`, in particular caller should properly
/// destroy `T` and release memory. The proper way to do it is to
/// convert pointer back to `Box` with `Box::from_raw` function, because
/// `Box` does not specify, how memory is allocated.
///
/// # Examples
/// ```
/// # #![feature(alloc)]
/// use std::boxed;
///
/// let seventeen = Box::new(17u32);
/// let raw = boxed::into_raw(seventeen);
/// let boxed_again = unsafe { Box::from_raw(raw) };
/// ```
#[unstable(feature = "alloc",
           reason = "may be renamed")]
#[inline]
pub fn into_raw<T : ?Sized>(b: Box<T>) -> *mut T {
    unsafe { mem::transmute(b) }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Box<T> {
    #[stable(feature = "rust1", since = "1.0.0")]
    fn default() -> Box<T> { box Default::default() }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for Box<[T]> {
    #[stable(feature = "rust1", since = "1.0.0")]
    fn default() -> Box<[T]> { Box::<[T; 0]>::new([]) }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> Clone for Box<T> {
    /// Returns a new box with a `clone()` of this box's contents.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = Box::new(5);
    /// let y = x.clone();
    /// ```
    #[inline]
    fn clone(&self) -> Box<T> { box {(**self).clone()} }

    /// Copies `source`'s contents into `self` without creating a new allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// # #![feature(alloc, core)]
    /// let x = Box::new(5);
    /// let mut y = Box::new(10);
    ///
    /// y.clone_from(&x);
    ///
    /// assert_eq!(*y, 5);
    /// ```
    #[inline]
    fn clone_from(&mut self, source: &Box<T>) {
        (**self).clone_from(&(**source));
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialEq> PartialEq for Box<T> {
    #[inline]
    fn eq(&self, other: &Box<T>) -> bool { PartialEq::eq(&**self, &**other) }
    #[inline]
    fn ne(&self, other: &Box<T>) -> bool { PartialEq::ne(&**self, &**other) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialOrd> PartialOrd for Box<T> {
    #[inline]
    fn partial_cmp(&self, other: &Box<T>) -> Option<Ordering> {
        PartialOrd::partial_cmp(&**self, &**other)
    }
    #[inline]
    fn lt(&self, other: &Box<T>) -> bool { PartialOrd::lt(&**self, &**other) }
    #[inline]
    fn le(&self, other: &Box<T>) -> bool { PartialOrd::le(&**self, &**other) }
    #[inline]
    fn ge(&self, other: &Box<T>) -> bool { PartialOrd::ge(&**self, &**other) }
    #[inline]
    fn gt(&self, other: &Box<T>) -> bool { PartialOrd::gt(&**self, &**other) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Ord> Ord for Box<T> {
    #[inline]
    fn cmp(&self, other: &Box<T>) -> Ordering {
        Ord::cmp(&**self, &**other)
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Eq> Eq for Box<T> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash> Hash for Box<T> {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        (**self).hash(state);
    }
}

impl Box<Any> {
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    /// Attempt to downcast the box to a concrete type.
    pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<Any>> {
        if self.is::<T>() {
            unsafe {
                // Get the raw representation of the trait object
                let raw = into_raw(self);
                let to: TraitObject =
                    mem::transmute::<*mut Any, TraitObject>(raw);

                // Extract the data pointer
                Ok(Box::from_raw(to.data as *mut T))
            }
        } else {
            Err(self)
        }
    }
}

impl Box<Any + Send> {
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    /// Attempt to downcast the box to a concrete type.
    pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<Any + Send>> {
        <Box<Any>>::downcast(self).map_err(|s| unsafe {
            // reapply the Send marker
            mem::transmute::<Box<Any>, Box<Any + Send>>(s)
        })
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Display + ?Sized> fmt::Display for Box<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for Box<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Pointer for Box<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        // It's not possible to extract the inner Uniq directly from the Box,
        // instead we cast it to a *const which aliases the Unique
        let ptr: *const T = &**self;
        fmt::Pointer::fmt(&ptr, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Deref for Box<T> {
    type Target = T;

    fn deref(&self) -> &T { &**self }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> DerefMut for Box<T> {
    fn deref_mut(&mut self) -> &mut T { &mut **self }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator + ?Sized> Iterator for Box<I> {
    type Item = I::Item;
    fn next(&mut self) -> Option<I::Item> { (**self).next() }
    fn size_hint(&self) -> (usize, Option<usize>) { (**self).size_hint() }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for Box<I> {
    fn next_back(&mut self) -> Option<I::Item> { (**self).next_back() }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: ExactSizeIterator + ?Sized> ExactSizeIterator for Box<I> {}


/// `FnBox` is a version of the `FnOnce` intended for use with boxed
/// closure objects. The idea is that where one would normally store a
/// `Box<FnOnce()>` in a data structure, you should use
/// `Box<FnBox()>`. The two traits behave essentially the same, except
/// that a `FnBox` closure can only be called if it is boxed. (Note
/// that `FnBox` may be deprecated in the future if `Box<FnOnce()>`
/// closures become directly usable.)
///
/// ### Example
///
/// Here is a snippet of code which creates a hashmap full of boxed
/// once closures and then removes them one by one, calling each
/// closure as it is removed. Note that the type of the closures
/// stored in the map is `Box<FnBox() -> i32>` and not `Box<FnOnce()
/// -> i32>`.
///
/// ```
/// #![feature(core)]
///
/// use std::boxed::FnBox;
/// use std::collections::HashMap;
///
/// fn make_map() -> HashMap<i32, Box<FnBox() -> i32>> {
///     let mut map: HashMap<i32, Box<FnBox() -> i32>> = HashMap::new();
///     map.insert(1, Box::new(|| 22));
///     map.insert(2, Box::new(|| 44));
///     map
/// }
///
/// fn main() {
///     let mut map = make_map();
///     for i in &[1, 2] {
///         let f = map.remove(&i).unwrap();
///         assert_eq!(f(), i * 22);
///     }
/// }
/// ```
#[rustc_paren_sugar]
#[unstable(feature = "core", reason = "Newly introduced")]
pub trait FnBox<A> {
    type Output;

    fn call_box(self: Box<Self>, args: A) -> Self::Output;
}

impl<A,F> FnBox<A> for F
    where F: FnOnce<A>
{
    type Output = F::Output;

    fn call_box(self: Box<F>, args: A) -> F::Output {
        self.call_once(args)
    }
}

impl<'a,A,R> FnOnce<A> for Box<FnBox<A,Output=R>+'a> {
    type Output = R;

    extern "rust-call" fn call_once(self, args: A) -> R {
        self.call_box(args)
    }
}

impl<'a,A,R> FnOnce<A> for Box<FnBox<A,Output=R>+Send+'a> {
    type Output = R;

    extern "rust-call" fn call_once(self, args: A) -> R {
        self.call_box(args)
    }
}

impl<T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<Box<U>> for Box<T> {}